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We study the effect of random porous matrices on the isotropic- nematic phase transition. Sufficiently close to the 
cleaning temperature, both random field and thermal fluctuations are important as disordering agents. A novel ran-
dom field fixed point of renormalization group equation was found that controls the transition from isotropic to the 
replica symmetric phase. Explicit evaluation of the exponents in d = 6 – ε dimensions yields to a dimensional reduc-
tion and three-exponent scaling.  
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Liquid crystalline ordering in a confined geometry has been the subject of considerable investigation during the past decade. 
The study of liquid crystals constrained to a random network of porous silica aerogel has been an area of current interest due 
to their importance in technological applications and from a fundamental point of view. Such liquid crystal porous matrix sys-
tems emerge in many natural and technological processes, giving rise to scientific activity. One of the fundamental questions 
is the effect of finite size and quenched disorder on the phase transitions. Liquid crystals exhibit a variety of experimentally 
accessible phase transitions involving orientational and translational ordering. Most of the studies are focused on the nematic-
isotropic or nematic-smectic phase transitions. For example, the first has been investigated using various experimental tech-
niques [1]. The main results could be summarized as follows: (a) the bulk isotropic-nematic (I-N) phase transition temperature 
is shifted down and the character of the transition changes; (b) even for above the bulk I-N phase transition temperature, there 
exists a weak residual nematic ordering; and (c) Monte Carlo simulations show that in some cases the nematic order is re-
placed by a quasi-long-range nematic phase. 

Theoretical modeling of such phenomena is difficult. The porous matrix not only geometrically confines the liquid 
crystal, but also induces a random orienting field that fixes the direction of the order parameter near the surface of the 
matrix. Some experiments with liquid crystals in random porous media [2] showed that the random preferential orienta-
tion of the liquid crystal along the pore surface (whose normal changes direction randomly) profoundly influences the 
dynamics of an I-N phase transition in such a system, and fluctuations of the orientation order parameter relax at a much 
slower rate than in bulk liquid crystals. These experiments have stimulated theoretical work [3], and a random-field 
(RF) model for nematic liquid crystal has been proposed that qualitatively explains the glasslike behavior seen in ex-
periments for liquid crystal-aerogel systems [2,4,5,6]. 

The nematic phase within the pores could be modeled as an Ising-like system with an imposed random field cou-
pled directly to the orientational order parameter to account for the random confinement. Such a model uses a random 
uniaxial anisotropy on a spin system [3,7], including a symmetric coupling between the anisotropy vector and order pa-
rameter in order to account for the “up-down” nematic symmetry. This RF term in the Hamiltonian of the nematic liq-
uid crystal is linear coupled to the order parameter. The strength of the random field in this model should directly de-
pend on the anchoring strength of the molecules to the surface of the gel and indirectly on the porosity. This model may 
be described as an RF Ising model.  

However, the experimentally obtained functional form for the scaled autocorrelation function is quite different 
from that obtained in a simulation of the RF Ising model. Really, the liquid crystal is a system with many degrees of 
freedom (the order parameter tensor has five independent components) and has a different symmetry from the Ising 
model. 

The basic point in discussing the effect of RF on ordered nematic phases follows from the Imry-Ma argument 
[8,9], which suggests that this continuous symmetry system does not have nematic long-range order for dimensions less 
than four (d < 4). The possibility for the nematic phase to be replaced by a glassy state characterized by quasi-long-
range order was discussed by Radzihovsky and Toner [10], and also predicted by numerical simulations [11], and by 
Feldman [12] using a renormalization group (RG) approach.  

The theory [12] is the first one that extends beyond the mean field approximation for the low-temperature phase of 
disordered nematics. In this low-temperature phase, uniaxial nematics in random porous media can be mapped onto the 
RF O(N) model. However, mapping becomes invalid near the phase transition to the isotropic phase. In this paper, we 
focus on the effects of quenched disorder that are introduced by the host silica aerogel at the high-temperature phase, 
i.e., above the I-N phase transition temperature. An appropriate model would require a full Landau-de Gennes type 
Hamiltonian incorporating a random orienting field. We carry out the mean field analysis and RG treatment as well. 

The order parameter for a nematic liquid crystal is a three-dimensional symmetric traceless second rank tensor 
Qαβ. The effective Landau-de Gennes free-energy functional appropriate to the RF nematic model near the I-N phase 
transition can be written as 

 ( ) ( ) ( ) ( ) ( )
222 3 2

0

1 1 1 1
Tr Tr Tr Tr ( ) ( )

2 2 3 4
dF d x r Q Q b Q c Q h x Q x

� �� �
= + ∇ − + −

� �� �� 	∫ , (1) 

where r0 = T – T0, T0 is the second order transition temperature if b = 0 (bulk supercooled temperature limit), and b, c 
are temperature independent constants. The quenched RF hαβ (x) is a symmetric, traceless, Gaussian random tensor with 
vanishing quenched average [hαβ (x)]αυ = 0 and with variance [13] 

 
� � � � � � �� � � � ������ � � � � ��� �� �� �� �� �� �� ��� � � � � �� � � �  (2) 

n is the dimensionality of the tensor hαβ . 
Ground state configurations of the longitudinal component of the field  !" #

 (we consider here only the uniaxial 

nematic) are defined by the saddle-point equation 

 $ %& ' ()* + * ,* -* . /01 2 0 2 3
 (3) 

It will be useful to recall first what behavior is expected for a nematic placed in a non-random field, i.e., a homogeneous 
field in a uniform direction. The isotropic phase acquires some order and is transformed into a paranematic phase. The para-
nematic-nematic phase transition occurs at r0c = (2b2/9c) (1 + h/2hc). Here hc = (b3/27c2) is a uniform critical field that deter-
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mines the nematic-paranematic critical point, �� � � ��� � � 	
 �
. For h < hc the paranematic supercooling temperature T0 and 

the nematic overheating temperature T * both have field dependence 

 

� � �� � ��� � � � �� � � � �� �� �� �� � �� �� � � � �� ��� �� � , (4) 

where (±) correspond to T0 and T *, respectively. All three temperatures T0, Tc, and T * merge at the nematic-paranematic 
critical point � ! . For h > hc, the order parameter "  will increase smoothly as temperature is decreased. 

Apparently, the solutions of Eq. (3) with non-homogeneous h(x) may essentially depend on a particular configura-
tion of the quenched fields. The effect of RF is averaged over a length scale L, over which the orientation is correlated. 
The mean magnitude of the sum of the random fields is given by the sum of the squares of the random fields. Using the 
central limit theorem, the effective RF which couples to the local order parameter is approximately h0 L

–d/2. Now, be-
cause the order parameter is changing on a length scale, the elastic energy term is of the form #$ %& '

. Combining the 

ideas of Landau and those of Imry and Ma, it was shown, that for low order parameters ()* +, -. , the correlation 

length L  is about a molecular length scale [7]. The free energy advantage is as though there were fixed nematic fields 
on the molecules, and it is negatively linear in " . There is an energy cost in changing molecular orientation from point 

to point, but this is negligible because it is proportional to /0
. Thus, for the isotropic phase the effect in this mean field 

consideration is roughly the same whether the imposed field is random or fixed.  
Let us estimate under which conditions random fields are relevant and are getting a dominant contribution for the 

ground state configurations. We divide the system into blocks of linear size L. As we have seen, the characteristic value 

of the RF in this block (averaged over realization) could be defined by 12 34 4 567 . In the case when the fields can be 

considered as the dominant factor, the order parameter does not depend on the temperature and it happens for 8 9:;< . 

Now it is easy to estimate the characteristic size of the block up to which the RF can dominate: = => ? ?@ A BCDEF . On the 

other hand, the approximation we are using is correct only on length scales much larger than the fluctuation region GH IJK . Thus, we have another bound for L: L MN . Therefore, the temperature region where RF effects cannot be 

ignored is, 

 ( )OPQR SRT U VWX YZ [\ \]^ _ . (5) 

Such a region of temperatures near Tc exists only if ̀ abc de . This value of fg  can be interpreted as the estimate for 

the temperature interval around Tc  in which the order parameter configurations are essentially defined by the random fields.  
In the mean field theory, using Landau critical exponents, the above nontrivial temperature interval fg  exists only at di-

mensions d < 6 and equals h ij khlm n op qrs tu . These simple arguments hold only in the approximation where critical fluctua-

tions can be neglected. Thus, the temperature region vw  where disorder induces a finite correlation length x yz {|} }~ � ~ � �� ��� � ��  is correct in this regime only. 

It is easy to estimate the Ginzburg criterion of the applicability of this approximation. For our model (1), one can 

get � �� � � �� ����� � �� �� � �� � �� , and the above result is valid only for �� �� . On the other hand, the Ginzburg tempera-

ture region is larger than the metastable interval of the first order I-N phase transition �� � ��   . For weak RF such 

that ¡ ¢£ £ £¤ ¤ , critical exponents get renormalized by thermal fluctuations, and in the region ¥¦ ¦§ , RF fluctua-

tions are important as well. 
The following qualitative arguments may be constructed. Actually, multiple global solutions of the saddle point 

Eq. (3) can appear due to the double-well local potential. This potential has two local minima for ¨©ª ª ª« «  and for 

the values of the field ¬ ® . At temperatures above T *, the disordered local minima solution is unique. Just below T *, 

however, multiple local minima solutions appear. The energy of the nematic solution is higher than typical energy of 
the disordered solutions. At further temperature lowering, the interaction of the local minima solutions is getting not 
small, and we may expect the nontrivial behavior. Like in spin-glasses [15], there is a large number of the disorder de-
pendent local energy minima. In contrast to the usual spin-glass phase, these minima probably are separated by finite 
energy barriers. Therefore, it is possible to expect the existence of a finite temperature interval between isotropic and 
nematic phases where the glassy-type behavior occurs. In this state the standard nematic order parameter equals zero, ¯ ° ±²³´ µ

, but the bilinear average ¶· ¹̧º»
 is different from zero at all temperatures and plays the role of the order 

parameter of the nematic glass. At the same time, the application of external magnetic field H restores the long-range 
orientational order, and the magnetic field threshold is determined from the condition that the nematic coherence length ¼ ½½¾ ¿À ¹ÁÂ Ã ÄÅ  is less than the disorder induced correlation length Æ ÇÈÉÊ

. Here, ËÌ  is the anisotropy of the diamag-

netic susceptibility of the nematic. 
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In the glass-type phase, thermodynamics is defined by numerous disorder dependent local energy minima. In such 
a situation the perturbation theory and the usual RG approach in its traditional form that gives the correct result for the 
Hamiltonian with only one minimum cannot be used. The most developed technique in this case is the Parisi replica 
symmetry breaking method [16]. Using this technique, it has been proven that for the N-component ( �� �

) spin sys-
tems with RF, the usual scaling replica-symmetry solution is unstable with respect to the replica symmetry breaking in 
the phase transition point. Moreover, it turns out that the spin-glass transition, which is believed to take place at replica 

symmetry breaking temperature, always precedes the low temperature phase and obeys the equation 
� �� ���	 
 ��� �� ��  

[17]. If we compare ����  with a RF controlled temperature region �� , we see that � ���� �� . It is not clear whether 

replica symmetry breaking occurs in the whole RF critical region �� , or is restricted to the much smaller temperature 

interval.  
Now we consider the disordered I-N model, defined by Eq.(1) within the high-temperature, i.e., isotropic phase. A 

direct analysis of the Landau-de Gennes model written in terms of the order parameter is often superior in understand-
ing the critical properties of the transition and the high-temperature phase. We assume the existence of rather strong 
fluctuations of the order parameter in the isotropic phase near the I-N transition, for which experimental evidence exists 
[18]. It is easy to show that all five independent tensor components are allowed to fluctuate in the isotropic phase in the 
same manner. This has considerably simplified the calculations in comparison with the nematic phase. On the other 
hand, the Landau-de Gennes Hamiltonian has cubic and quartic interaction terms, and one more is the RF term. Really, 

there are three length scales in the fluctuation theory. Namely, � � !"# $% & &� , ' () *+, - ./ 01 2 23  and 4 56 789: ; <= >?@ A AB . 

Let one remove the fast modes and rewrite the Hamiltonian in terms of the block order parameter, corresponding 
to the scale L = al. Here a is the ultraviolet cutoff, and CD E

. Then we make rescaling such a way that the Hamiltonian 
would restore its initial form with new constants b(L), c(L), and h0(L). Dimensional analysis provides estimations 

 FG H IJ K J KLM N O M PQR , ST U T UVW X Y W Z[\ , ] ]^ _ ^ _` a b` cd . (6) 

If one considers the combination efghi j
 as a new parameter, we immediately get 

 kl m l mno p qrs t s
. (6a) 

Iteration until uv w xyz {
 yields | }~ �� , i.e., the length scale beyond which the RF fluctuations are significant. The 

same arguments are true for the order parameter fluctuations coming from cubic term in (1). The quartic term is an ir-
relevant variable in the RG sense. Hence, the two length scales are important for I-N phase transition near �� �

. Thus 
we interpret this result physically by noting that sufficiently close to ��

, the dominant disordering agent is not the RF 

only, but the thermal fluctuations caused by cubic interaction also. Of course, eqs. (6) are not exact, and corrections to 
the renormalization due to the interaction are necessary. The leading corrections to equations (6) and (6a) are propor-
tional to quadratic forms of ∆ and b2. Using the RG method for disordered systems, recursion relations are established 
for the parameters of the effective replica Hamiltonian. Then replica symmetry is assumed and the RG equations be-
come simple functions of replica number. In that respect, the use of replica is a trick of diagram counting. One can gen-
erally establish identical RG equations directly by considering disorder correlation functions, a method which is usually 
called a replica symmetry perturbation theory. After standard RG transformations, the one-loop equations in differential 
form are the following 

 ���� � �� � � � �� � ��� ��� � � � �� � �� � � � � � � , (7a) 

 

� ��� � ����� � ��   ¡ ¢£ ¤ ¤ ¤ ¥  , (7b) 

 ¦§¨ ©©ª ©«§¨ ª¬ ¬ ® ¯ °± ² ³ ´ ³ ±
. (7c) 

Here we put n = 3 for a nematic liquid crystal. 
The exponent η determines the behavior of the two-point correlation function G(q), which is defined by means of 

the relation 

 µ ¶ · µ ¶ µ ¶ ¸ · µ ¶ µ ¶ ¸¹º ¹º» ¼ ½ ¼ ½ ¼ ½ ¼ ½ ¼¾ ¿ ¿ ¿ .  (8) 

At the critical point, G(q) diverges as qη–2, and to the lowest order in the perturbation expansion, 

 ÀÁ ÂÃÄÅ Æ . (9) 

Inserting this expression into (7), we find that the fixed points µ(b2,∆) of the RG equations are given by 
µ0(0,0), µb(6ε/13,0), µ∆(0,ε/26), and µ*(6ε/613,25ε/613). The RG flow diagram in the (b2,∆) plane is illustrated in 
figure.  

In addition to the trivial Gaussian fixed point µ0, these equations possess three nontrivial fixed points. The fixed 
point µb describes the critical behavior of the pure nematic and the coefficient r at this point is greater than zero. Thus 
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fixed-point Hamiltonian has a minima at �� �
 and at � � ��

. The 
first-order transition occurs if the order parameter falls into the later deep 
minimum. It is likely that the µb fixed point corresponds to the critical 
fluctuations about the metastable minimum at �� 	

 [19]. The fixed 
point µ∆ is exactly the RF Heisenberg fixed point for the five component 
O(N) model and it describes the RF behavior at the isolated Landau point 
on the phase diagram, where b = 0 [20]. All the above fixed points are 
unstable.  

The only stable fixed point is µ*, that controls the behavior of the 
relevant parameters of the Hamiltonian below six dimensions, and corre-
sponds to the replica symmetric phase with an infinite correlation length. 
The fixed point value of r is less than zero, i.e., the transition tempera-
ture is renormalized upward. Unfortunately, there is no unique energy 
extremum in this case. If the RG flows are smooth in the neighborhood 
of r = 0, as is usually assumed, then it should be reasonable to extrapo-
late the flows from r 
 0 (where the RG equations are presumably valid) 

to the desired region near the fixed point.  
Let us now determine the critical exponents associated with the fixed point µ*. The correlation length exponent �  

follows directly from Eq. (7a) 

 � ��� ���� ��� � � � � . (10) 

To obtain an expression for the critical exponent for the susceptibility � , we recall that under the RG iterations the two-point 

correlation function behaves like [21] 

 ���� !  " " # $%& ' & ()* + *∫
, ,- - - -

.  

Using the perturbation expansion for ./  one can obtain 

 012 13 45 6 7 8 9 .  (11) 

The specific heat exponent :  can be calculated from a singular part of the free energy 

 

;< =>?@ ? AA BCD E F GHI J∫
K KL M M

, 

where N OPQ R
 is the coefficient of the ST

 term in Hamiltonian averaged over the distribution of the RF, and U VW XYZ
. 

Evaluating the above integral to leading order we find [\] ^_ `a , where  

 bc d efg fh ij kl m k n .  (12) 

Equations (9)-(12) yield the usual “thermodynamic” scaling law op qr s tu v , and modified hyperscaling law w x yz{ | }~ � ~  with the “violation of hyperscaling” exponent �� �� � . This result is valid at first order in � �� � � . 

In the presence of the RF, the quantity � ��� � � ���� � �
 is non-zero even in phases where � � � ���� �

 vanishes. There 

are therefore two distinct correlation functions to consider. The first is the analog of the usual connected correlation function 
G (8), and the second is the disconnected function and is specific for random systems. It measures the fluctuations in the local 
quenched order parameter 

 � � � � � � � � � � � � � � � ��  ¡  ¡  ¡¢ £ ¤ £ ¤ £ ¤ £ ¤ £¥ ¦ ¦ ¦   (13) 

and diverges at small §  as ¨©ª «¬® ¯ .  

To compute the exponents describing the behavior of the disconnected correlation function near Tc, we can write °± ² ± ² ± ²³́ µ ¶ µ · µ¸  [22]. Here D(q) is related to a dressed spectral function ¹º » ¼½ ¾
 of the RF fluctuations. If °¿ ± ²À µ µ ÁÂÃÄ  for ÅÆÇ È

, then one obtains É ÊË ÌÍÎ Ï Ï Ð ÑÒÓ ÓÔ  and ÕÖ Ö ×ØÙ ÚÛ
. Note that the choice Ü×Ø Ù  yields ÕÖ ÖÙÛ

, a value which is on the limit of the exact inequality ÝÞ Þßà
, due to [23]. Another relation was suggested by 

consideration of the RF contribution to the free energy in a correlation volume which scales as áâ . In contrast, for the 

pure system the characteristic scale of variation of the effective free energy is simply set by the thermal fluctuations, 

i.e., ãä . On the other hand, if the local order parameter was uncorrelated with the RF this would scale as åæ ç èé ê
. 

2 

4 
3 1 

∆ 

b2 

≈ 

Phase diagram of the RG equations (7b) and 
(7c). The arrows show the direction of the 
renormalization group flows. Points 1, 2, 3, 
and 4 stand for the fixed points µ0, µb, µ∆, 
and µ*, respectively 
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Here the factor ���  is coming from the scaling of the total RF. The relation for β is easy to find from scaling the dis-

connected correlation function in a real space � � � ��� 	 
� �  � . Since the correlations could be included by addi-

tional factor ��� � , corresponding to �� � �� � �� ��  for ���  , we expect that !" # $%& ' ( . The case )*+ ,  yields -. /0 1 , which is on the limit of another inequality 
-. /2 1  [24]. Thus for the violation of hyperscaling exponent 

we recover the result 34 5 56 7 8 9  [14,17,24,25].  

In our one-loop calculations, the critical exponent η is determined by the coupling b (9), and :; ;<= . The ∆ de-

pendent term appears in CS (q) only in the two-loop diagrams, as does the cross term b2∆. Using the diagrammatic ex-
pansion for D(q) we find 

 > >? @A B AC A D B EF BGH I J K IL M N O N ,  (14) 

and now the particular value λ∆ = (7/3)∆(6∆ – b2) is non-zero to the second order in ε = 6 – d. All diagrams in (14) must 
be disconnected before averaging over the RF distribution.  

The value for η is coming from the diagrams contributing to two-point correlation function G(q). There are three 
types of terms in the perturbation expansion. The first and second terms are a double power in b2 and ∆, respectively. 
The third term is a double product b2∆ contribution. In contrast to the disconnected correlation function, all diagrams 
here are connected before configuration averaging. Note that not all of them are tree-like diagrams, as it is the case for 
the O(N) model. Formally we can divide all these contributions and write P Q P PR PS T U S T UV V VW W WX Y Z Z . In the one-loop 

approximation, [ \] ^  and _`  is the critical exponent to linear order in ε (9). A straightforward evaluation of the RF 

depended diagrams leads to expression ab cde . This means that for the hyperscaling violation exponent we get fgh ij k .  

More generally, in the vicinity of the fixed point µ * the random correlation function is proportional to c–1 for small c. 
Therefore, in the critical region one expects that the random correlation function will scale as l mn op q q r p q rst tu v w w x u x v xy z{ {| | | |} ~ ~ ~ , where ��  is the scaling exponent of the irrelevant parameter � . For �� �  one has 

the behavior ��� ��� �� ��� �  with �� ��� � � �� � ��
. Using the relation �� �� �  ¡ ¢£ £

 that follows from the scaling at 

small q and ¤¥ ¦  we can write §¨© ª ª« ¬ ¬
. We see that ®̄ °± ² . This result is quite obvious. Really, on the other 

hand, the perturbation expansion for free energy is a double power series in ³´ , µ , and ¶·̧ . The first terms in this series be-

have like ¹ ¹º» ¼  and ½¾¿À , or for large ¶·̧  they both are proportional to ¶·̧  as well. Thus, for the free energy density we have ¶ ¶· ·Á Â Ã Á ÃÄÅ ¸ Æ ¸Ç ÈÉ É ÉÊË , where Ì  is the crossover exponent. If we conclude that Í  is a linear function of its argument for 

small Î , as it follows from the perturbation expansion, one can get Ï ÐÑÒÓ Ô Õ Ö× Ø Ù Ú ÙÎ Î ÛÜ , hence Ý Þ ßà . The crossover ex-

ponent is related to the scaling of the RF near the fixed point µ *: áâã  increases as äåæç èé êë . Writing the recursion relation 

for ìíî  up to two-loop order, as we have done, Eq.(14), we again find ïð ðñ ò ó ô óõö ÷ ø ö ÷ .  

All our results for critical exponents suggest that ùú úûü , in agreement with the three-exponent scaling picture 

[24,25]. For example, the exponent scaling gives for the ratio ýþÿ� þÿ��� � �� �� , which would diverge unless �	 	
 �  

is valid. However, this divergence is too weak to be detected, and thus this ratio may be concerned as a constant, and 
the concept of no self-averaging in RF systems is expected [26].  

We have considered the effects of a RF (field conjugate to the order parameter) on an I-N phase transition using 
the ε = 6 – d expansion method. We have found the novel RF fixed point that proceeds from the existence of two rele-
vant variables in the RG approach, namely, RF and quartic interaction product, ∆, and the cubic interaction, b, which is 
special to a nematic liquid crystal. The first involves the effects of the RF, while the latter involves those of thermal dis-
order. These two agents of disorder give comparable contributions to the problem. In the pure nematic, when h0 = 0, the 
zero cubic term means that the system is located at an isolated Landau point at the phase diagram. This point is unstable 
with respect to b. The interpretation of this instability depends on the existence of a stable µb fixed point. As was men-
tioned, this fixed point corresponds to critical fluctuations about the metastable minimum at � �

. When non-zero h0 

is switched on, ∆ scales as exp(50 13)ε �  near the pure fixed point. Then �  is renormalized toward a fixed point µ *, 

and all critical exponents are changed. As we believe, this fixed point governs the critical behavior at the transition from 
isotropic to the replica symmetric phase, that precedes the replica symmetry breaking phase. Such kind of two step sce-
nario is likely to take place in the Ising spin glass in an external magnetic field [27]. The location of this nontrivial ran-
dom fixed point on a phase diagram is quite close to the fixed point µ∆ with zero cubic term (we may call this point a 
random isolated Landau point). This indicates that the critical behavior of the isotropic nematic in RF is like the behav-
ior of the RF Heisenberg model for the five component order parameter. The independent calculation of the critical ex-
ponents shows that the dimensional reduction in the hyperscaling relations for the RF isotropic nematic contains the 
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shifted value �� � �� � � � instead of d. The so-called “three exponent scaling” appears in the second order in ε. The 

model for studing the replica symmetry breaking transition from the replica symmetric phase is clearly necessary to per-
form further investigations.  

 
I would like to thank Professor Boris Kochelaev for stimulating my interest in the problem of disorder in the soft 

condensed matter systems, and for acquainting me with the mysterious liquid crystals. 
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