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Experimental and theoretical investigations of dynamics and relaxation of multiple quantum

(MQ) nuclear magnetic resonance (NMR) coherences of the zeroth and second orders are per-

formed in a quasi-one-dimensional chain of nuclear spins of 19F in calcium fluorapatite. MQ

NMR dynamics are studied on the preparation period of the MQ NMR experiment in the ap-

proximation of nearest neighbor interactions. The density matrix of the system at the end of

the preparation period is used as the initial condition for the study of the relaxation process on

the evolution period of the MQ NMR experiment. The relaxation asymptotics of the intensity

of the MQ NMR coherence of the zeroth order is obtained. Relaxation of the MQ NMR co-

herence of the second order is investigated with ZZ part of the dipole-dipole interactions. The

experimental data qualitatively agree with the results of the developed theory.

PACS: 03.65-w,03.67.Mn, 76.60-k

Keywords: multiple quantum NMR, multiple quantum coherence, relaxation, fermions, dipole-dipole
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1. Introduction

It is well known that multiple quantum (MQ) nuclear magnetic resonance (NMR) is widely

used to study the nuclear spin distributions in solids. However, MQ NMR is also an important

method for the investigation of various problems of quantum information processing [1] such

as transmission of quantum information [2] and decoherence processes [3]. MQ NMR not only

creates multi-qubit states but also allows the investigation of their relaxation under the action

of the correlated spin reservoir. Relaxation of the MQ NMR coherences can be considered as

the simplest model for the study of decoherence processes.

One-dimensional spin systems open up new possibilities for the investigation of dynamics

and relaxation of multi-qubit clusters because a consistent quantum-mechanical theory of MQ

NMR dynamics has been developed only for one-dimensional systems [4–7]. That theory shows

that only MQ NMR coherences of the zeroth and plus/minus second orders arise in a one-

dimensional spin chain initially prepared in the thermodynamic equilibrium state [4–7].

Relaxation of MQ coherences in one-dimensional systems has been studied earlier [3,6] using

the second moments of the line shapes of the MQ coherences of the zeroth and second orders.

We suggest to perform an analogous investigation using the ZZ model, where only the ZZ part

of the dipole-dipole interaction (DDI) is taken into account.

†This paper material was selected at XIX International Youth Scientific School “Actual problems of magnetic

resonance and its application”, Kazan, 24 – 28 October 2016. The paper was recommended to publication in our

journal and it is published after additional MRSej reviewing.
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The paper is organized as follows. A short review of the theory of MQ NMR dynamics [4–7]

of one-dimensional systems is given is Section 2. In Section 3 we show that the intensity of the

MQ NMR coherence of the zeroth order does not disappear completely due to the relaxation

process and obtain the stationary intensity of that coherence. Relaxation of the MQ NMR

coherence of the second order is studied in Section 4 using the ZZ model. We briefly summarize

our results in section 5.

2. The theory of MQ NMR dynamics in one-dimensional systems

The theory [4–7] is based on the fact that the non-secular two-spin/two-quantum Hamiltonian [8]

describing the MQ NMR dynamics is the XY Hamiltonian [9] which for a one-dimensional

system can be diagonalized exactly in the approximation of nearest neighbor interactions [9].

As a result, MQ NMR dynamics in such systems can be studied analytically. The developed

theory [4–7] allows us to obtain the density matrix σ(τ) on the preparation period of the MQ

NMR experiment [8] in the approximation of nearest neighbor interactions [10]. According to

that theory [4, 5] the density matrix σ(τ) at the time instant τ can be represented as

σ(τ) = σ0(τ) + σ2(τ) + σ−2(τ), (1)

where σi(τ) (i = 0, 2,−2) describes the MQ NMR coherence of order i.

If the number of spins N ≫ 1, the contributions σ0(τ), σ2(τ), σ−2(τ) are [4, 5]

σ0(τ) =
1

2

∑
k

cos[2Dτ sin(k)](1− a+k ak), (2)

σ2(τ) = −1

2

∑
k

sin[2Dτ sin(k)]aka−k, (3)

σ−2(τ) =
1

2

∑
k

sin[2Dτ sin(k)]a+
k
a+
−k
, (4)

where k = 2πn
N

(
n = −N

2 ,−
N
2 + 1, ..., N2 − 1

)
, D is the dipolar coupling constant of nearest

neighbors in the spin chain and the fermion operators a+k , ak are defined as

ak =
1√
N

∑
m

Ψme−ikm, a+k =
1√
N

∑
m

Ψ+
meikm, (5)

where the operators Ψm, Ψ+
m can be expressed with the Jordan-Wigner transformations [11] via

the spin operators

Ψm = 2m−1Iz1I
z
2 ...I

z
m−1I

+
m, Ψ+

m = 2m−1Iz1I
z
2 ...I

z
m−1I

−
m, (6)

where Iαm(α = x, y, z) are the spin angular momentum operators of spin and I+m, I−m are the

raising and lowering spin angular momentum operators of spin m.

Formulas (2-6) lead to very simple expressions for the experimentally observed intensities

of the MQ NMR coherences of the zeroth order (G0(τ)) and plus/minus second orders (G±2(τ))

[4, 5] for linear chains with N ≫ 1

G0(τ) =
1

2
+

1

2
J0(4Dτ), G±2(τ) =

1

4
− 1

4
J0(4Dτ), (7)

where J0 is the Bessel function of the first kind of order 0.
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Figure 1. Experimental intensities of MQ NMR coherences of the zeroth (circles) and plus/minus second

(squares) orders versus the duration of the preparation period. Solid lines are theoretical curves of Eqs. (7)

with dipolar coupling constant D = 16.0× 103 s−1.

In order to verify Eqs. (7) we have performed a MQ NMR experiment using quasi-one-

dimensional chains of 19F in calcium fluorapatite (Ca5(PO4)3F) [12]. The experiments were

performed on a Bruker Avance III spectrometer with static magnetic field of 9.4 T (the corre-

sponding frequency on 19F nuclear spins is 376.6 MHz). The results in Fig. 1 demonstrate a

good agreement of the experimental data with the theory. The best agreement was observed for

D = 16.0 · 103 s−1 (the theoretical value of D = 16.4 · 103 s−1).

Below we use the density matrix of Eq. (1) as the initial condition for the density matrices

describing the relaxation process on the evolution period of the MQ NMR experiment.

3. Relaxation of the MQ NMR coherence of the zeroth order

Relaxation of MQ NMR coherences on the evolution period is caused by the secular (with respect

to the external magnetic field directed along the z axis) DDI

Hdz =
∑
i<j

Dij(3I
z
i I

z
j − I⃗iI⃗j) =

∑
i<j

Dij(2I
z
i I

z
j − Ixi I

x
j − Iyi I

y
j ), (8)

where Dij is the coupling constant between spins i and j, and Di,i+1 = D.

The experimental results of the investigation of relaxation of the MQ NMR coherence of

the zeroth order are presented in Fig. 2 for different durations τ of the preparation period.

Unfortunately, the MQ NMR coherence of the zeroth order is not subject to relaxation in the

ZZ model [12]. It is important that the experimental data in Fig. 2 demonstrate that relaxation

does not lead to a full disappearance of the MQ NMR coherence of the zeroth order. Relaxation

ends with the stationary intensity of that MQ coherence. The point is that the density matrix

of Eq. (2) contains a part which is proportional to the operator Iz commuting with the DDI

Hamiltonian (8). The stationary MQ NMR coherence of the zeroth order in the high temperature

approximation [10] is described by the density matrix aIz, wherein the parameter a can be found

from the conservation law (⟨Iz⟩ = const):

Tr {σ0(τ)Iz} = aTr
{
I2z
}
. (9)

A simple calculation with Eqs. (2, 5, 6) yields in the limit N → ∞ [12]

a = J0(2Dτ). (10)
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Figure 2. Intensities of the MQ coherence of ze-

roth order depending on lengths of the prepara-

tion and evolution periods. The external mag-

netic field is directed along the chain.

Figure 3. Stationary intensity of the MQ NMR

coherence of the zeroth order on the evolution pe-

riod versus the duration τ of the preparation period.

The solid line is the theoretical curve of Eq. (11).

Taking into account that the experimental data were chosen equal to one at t = 0 in the

experimental conditions one can find the stationary intensity of the MQ NMR coherence of the

zeroth order:

F st
0 =

J2
0 (2Dτ)

G0(τ)
=

2J2
0 (2Dτ)

1 + J0(4Dτ)
. (11)

The experimental dependence of the stationary intensity of the MQ NMR coherence of the

zeroth order on the duration of the preparation period is presented in Fig. 3. One can see a

satisfactory agreement of the theoretical predictions with the experimental data.

4. Relaxation of the MQ NMR coherence of order two

An investigation of the relaxation process with the DDI Hamiltonian of Eq. (8) is too compli-

cated. However, the problem is substantially simplified if we restrict ourselves to the ZZ part of

Hdz only and consider the Hamiltonian

Hzz = 2
∑
i<j

DijI
z
i I

z
j =

∑
i̸=j

DijI
z
i I

z
j . (12)

We will refer to the problem with Hamiltonian Hzz as the ZZ model [12]. The intensity F±2(τ, t)

of the MQ NMR coherence of the plus/minus second orders in the course of the evolution period

at time instant t is

F±2(τ, t) =
Tr

{
e−iHzztσ±2(τ)e

iHzztσ∓2(τ)
}

Tr(I2z )
. (13)

Using Eqs. (3-6) and the commutation properties of the spin operators [10] one can obtain

F±2(τ, t) =
1

8N

∑
m,m′

∏
n̸=(m,m′)

cos [(Dnm +Dnm′) t] ·
[
1− (−1)m−m′

]2
J2
m−m′(2Dτ). (14)

One can find from Fig. (4) that the decay of the MQ NMR coherence of the second order

conforms reasonably well to a Gaussian function S(t) = exp(−1
2M2(τ)t

2), where the second

moment M2(τ) of the line shape of this coherence is

M2(τ) = − 1

G2(τ)

d2F±2(τ, t)

dt2

∣∣∣∣
t=0

. (15)
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Figure 4. The experimental intensities of the

MQ NMR coherence of the second order on the

evolution period t at different durations of the

preparation period τ . Solid lines are theoretical

curves of Eq. (14) with N = 150.

Figure 5. The experimental times of dipolar relax-

ation of the MQ NMR coherence of the second order

versus the duration of the preparation period τ . The

solid line shows the theoretical times te of dipolar

relaxation obtained as te =
√
2/M2(τ), where the

second moment M2(τ) is given by Eq. (15).

In Fig. 5, the dependencies of the experimental and theoretical dipolar relaxation times on

the duration of the preparation period are shown. These data were obtained from Fig. 4 as

the times te when the intensities of the MQ NMR coherences of the second order decrease by a

factor of e, i.e. te =
√

2
M2(τ)

. One can see that the theoretical predictions satisfactorily describe

the experimental dependencies.

The flip-flop part of the DDI was neglected in the developed ZZ model of relaxation of

the MQ coherences of the plus/minus second orders. This is one of the possible sources of the

discrepancy between the theoretical predictions and the experimental results. The other sources

are various kinds of experimental imperfections, the DDI with spins of surrounding chains and

heteronuclear interactions.

5. Conclusions

We studied theoretically and experimentally the relaxation of the MQ NMR coherences of orders

zero and two in the MQ NMR experiment [8]. The experimental investigation of the dipolar

relaxation of the MQ NMR coherences was performed on the quasi-one-dimensional chains of
19F nuclear spins in calcium fluorapatite. We have shown that the intensity of the MQ NMR

coherence of the zeroth order does not decay completely in the relaxation process. The calculated

stationary value of the intensity of the MQ NMR coherence of the zeroth order agrees with the

experimental data.

Relaxation of the MQ NMR coherences of orders two and minus two was investigated in the

ZZ model. A satisfactory agreement between the developed theory and the experimental data

was obtained.

Acknowledgments

This work is supported by the Russian Foundation for Basic Research (grants No. 16-03-00056

and No. 16-33-00867) and the Program of the Presidium of RAS No.1.26 “Electron Spin Reso-

nance, Spin-Dependent Electron Effects and Spin Technologies”.

Magnetic Resonance in Solids. Electronic Journal. 2016, Vol. 18, No 2, 16202 (6 pp.) 5



Dipolar relaxation of multiple-quantum NMR coherences in a linear homogeneous chain of 19F ...

References

1. Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information (Cambridge

University Press, 2000).

2. Cappellaro P., Ramanathan C., Cory D. G., Physical Review Letters 99, 250506 (2007).

3. Kaur G., Ajoy A., Cappellaro P., New Journal of Physics 15, 093035 (2013).

4. Fel’dman E. B., Lacelle S., Chemical Physics Letters 253, 27 (1996).

5. Fel’dman E. B., Lacelle S., The Journal of Chemical Physics 107, 7067 (1997).

6. Doronin S. I., Maksimov I. I., Fel’dman E. B., Journal of Experimental and Theoretical

Physics 91, 597 (2000).

7. Fel’dman E. B., Applied Magnetic Resonance 45, 797 (2014).

8. Baum J., Munoviz M., Garroway A. N., Pines A., The Journal of Chemical Physics 83,

2015 (1985).

9. Matts D. C., The Many Body problem: An Encyclopedia of Exactly Solved Models in One

Dimension (World Scientific, 1993).

10. Goldman M., Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon,

1970).

11. Jordan P., Wigner E., Zeitschrift für Physik 47, 631 (1928).

12. BochkinG.A., Fel’dmanE.B., Vasil’ev S.G., Zeitschrift für Physicalische Chemie,

DOI: 10.1515/zpch-2016-0807 [In press].

6 Magnetic Resonance in Solids. Electronic Journal. 2016, Vol. 18, No 2, 16202 (6 pp.)




