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Abstract

A simple model of the Fermi surface for the interpretation of the conduction
electron spin resonance (CESR) results in aluminium is developed. According
to the real aluminium Fermi surface 48 small circles with the large amount of
the g-factor shift are arranged in �ve layers on the Fermi sphere, as distinct from
the random distribution of them in the previous model proposed by Silsbee and
Beuneu (SB). The present model reproduces the known experimental CESR
linewidth dependencies versus the frequency at di�erent temperature region as
well as the SB model. Additionally to the SB results the CESR linewidth is
found to be independent from the magnetic �eld direction in the high temper-
ature approximation. In both other cases (intermediate and low temperatures)
the g-value anisotropy over Fermi surface is predicted to lead to the essential
angular CESR linewidth dependence with �ve peaks. Some applications of the
model to various systems with conduction electrons are discussed.

PACS : 76.30.Pk; 71.18.+y

Keywords : conduction electrons, Fermi surface, spin resonance, aluminium
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1 Introduction.

The angular dependence of the conduction electron spin resonance (CESR) can
be caused by the inuence of sample boundaries. It is often considered as the sole
cause in the treatment of experimental data, especially for thin metallic �lms
[1, 2]. The appearance of the CESR angular dependence may be also connected
with the Fermi surface anisotropy and (or) conduction electrons g-factor spread
over the Fermi surface [3]. Together with magnetic breakdown [4, 5, 6] this must
be taken into account for the metallic specimens with monocrystal or oriented
polycrystal structure.

In this paper we advance a simple model of such anisotropy and we believe
that the model can work not only for usual polyvalent metals with complicated
Fermi surface (Al, Be, Mg, Zn, etc.), but it also may be useful for the inter-
pretation of the CESR data for modern materials (organic conductors [7], for
example). The model is appreciable founded on the one proposed by Silsbee and
Beuneu (SB) [8] to explain the CESR linewidth linear dependence on frequency
in terms of the motional narrowing within the intermediate temperature range.

It is known [6, 9, 10] that the conduction electrons with di�erent quasimo-
menta p have di�erent g-factor: g(p). The di�erence between the conduction
electron g-factor and the free electron value g0 arises due to the spin-orbit cou-
pling. Beuneu [12] calculated explicitly the conduction electron g-factor for
aluminium in more than 8000 points on the Fermi surface, thus he determined
the p-dependence of the g-shift

�g(p) = g(p) � hg(p)i � g(p)� g: (1)

Here h:::i means standard average on the Fermi surface.
A remarkable feature of this calculation is the existence of very long tails in

the spread of g-shift, which extend to values of �g as large as plus and minus
several hundreds.

The appearance of these very large g-shifts is a natural consequence of the
existence of 24 degeneracy points on the free electron approximation Fermi
surface where the second and third zones contact [11]. Al is a metal with a face-
centered cubic lattice and a cubical octahedron Brillouin zone. These points
(W -points) are localised on the intersections of quadrangular and hexangular
faces (see Fig.1). Here the g-factor can achieve the value of several hundreds.
This circumstance was taken into account in the following way [8]. Spin-orbit
interaction lifts the degeneracy and small spin-orbit gap gives rise to locally very
small e�ective masses and hence to exceedingly large orbital moments which, in
turn, are strongly coupled to the spin [9]. There are 48 small spots with large g-
shifts on the Fermi surface of aluminium in the vicinity of the W -points, 24 ones
on each of the second- and third-zone surfaces, after lifting of the degeneracy
by the spin-orbit splitting. The role of g anisotropy in clarifying experimental
CESR linewidth dependencies versus the frequency at di�erent temperatures
for Al has been explored theoretically by Beuneu [12], SB [8]. Freedman and
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Fredkin [13], Silsbee and Long [14] have investigated combined e�ects of an
exchange and the g anisotropy.

Figure 1: The real Fermi surface and the Brillouin zone for aluminium.

As regard to the magnetic breakdown, it provides a contribution to the full
CESR linewidth with the g-anisotropy existence only [4], [5]. The calculations
[5, 6] have showed that this contribution is directly proportional to the magnetic
breakdown probabilities. In turn, these probabilities are known to depend on
the magnetic �eld inclination angle. Hence this dependence is extended to the
CESR linewidth.

To conclude this section let us mention that the number of references incor-
porating the real Fermi surface structure of metals for the CESR research may
be found in the recent review [6].

2 Model discussion.

Assuming that all mechanisms of a broadening and a shift of the CESR line
give additive contributions, we will consider in more detail the contribution of
indicated anisotropy g(p) distribution over the Fermi surface to the angular de-
pendence of the CESR linewidth. We will neglect all other causes of spin lifetime
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shortening due to the scattering on other electrons, phonons, boundaries, impu-
rities, dislocations and inhomogeneities of other kinds leading to homogeneous
linewidth of CESR.

The simplest interpretation of the observed line width is as follows. The con-
duction electrons with di�erent quasi-momenta (and di�erent g-factors ) should
be in resonance with di�erent �elds. Hence, if it were possible to observe, the
experiment would exhibit an inhomogeneous CESR line pro�le corresponding
to the real spread of the electron g-factor over the Fermi surface

�!g '
1

�h
�g�BH: (2)

Here �g =
D
(�g)2

E1=2
is the mean square deviation of the g-factor over the Fermi

surface, �B is the Bohr magneton. In this case �!g is the CESR linewidth due
to the g anisotropy.

In reality, such an inhomogeneously broadened line is not observable. The
reason is that the conduction electrons do not "stand still" at di�erent places on
the Fermi surface. In a magnetic �eld the conduction electrons move over the
Fermi surface either along cyclotron orbits (high �elds, low temperatures, pure
metals), or in a di�usive mode because of all kinds of scattering mechanisms
(by convention we will call this case a "high temperature" one). In the second
case the magnetic �eld inuence on the electrons motion over the Fermi surface
is negligible.

In the high temperature case the conduction electron is able to "visit" many
points over the Fermi surface during spin lifetime �s because of �s � � where
� is scattering momentum time, characterising the transition from one p state
on Fermi surface to another one. These various points are characterised by
di�erent g-factors g(p) and di�erent local resonance �elds H, correspondingly
(as a rule the CESR spectrometers operate at a �xed frequency !s). As a result
the conduction electrons experience the action of a somewhat averaged �eld,
and the CESR line becomes narrower. The corresponding contribution of the
g-factor anisotropy to the linewidth is given by the known formula of "motional
narrowing"

�! �
�2g
g2

!2s�: (3)

Here !s is the resonance frequency.
In rather pure metals the temperature decreasing causes an increase in the

conduction electron momentum relaxation time � . The contribution to the
linewidth (3) also rises. This rise can go on until ��1 becomes of the order of
�!g. However before the full breakdown of motional narrowing the conduction
electrons start to move along cyclotron orbits. In this situation an electron can
manage to accomplish several revolutions around the Fermi surface between two
scattering events because the cyclotron frequency !c becomes larger than ��1.
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Under this condition the g-factor must be averaged over the cyclotron orbits at
�rst.

For each orbit characterised by pz there is its g-factor shift [12, 13] (magnetic
�eld H is directed parallel to z axis)

�g(pz) = hg(p)ipz=const � hg(p)i :

This shift signi�cantly reduces the g-factor mean square spread �g which is equal

to
D
(�g(pz))

2
E1=2

for the considered case. For instance, in Al the g-factor

averaging over all the Fermi surface due to the conduction electron di�usive
motion yields �g = 0:469, while the initial averaging over cyclotron orbits can
reduce this spread down to �g = 0:067 [12]. In the most interesting intermediate
case (!c� � 1) the averaging procedure should be very sophisticated due to the
mixed nature of conduction electron motion in magnetic �eld (see below) and
the real Fermi surface computations have not been carried out [12].

The present research is devoted to the development of a model proposed by
SB [8] for the CESR linewidth behaviour interpretation in aluminium. Briey
we will point out the main features of the SB model. The conduction electrons
were taken as a free electron gas. Instead of the real complicated Fermi surface
with actual g-spread they suggested to consider the Fermi sphere lying in several
Brillouin zones. The radius of Fermi sphere is pF. This procedure may be named
inverse reconstruction of Harrison. Almost anywhere on the Fermi sphere the
g-factor was taken to be equal to g (see Eq.(1)), that was calculated by Beuneu
[12]. The 48 small circular areas (named as R-disks) with the large g-shift were
corresponded to the nearest neighbourhoods of W -points

j�g0j = 1:1 � 103:

This shift was taken positive on one-half of the R-disks, negative on the rest, to
leave a mean g-shift of zero. The radius of the R-disks was appropriately taken
to give a disk area �p2 equal to the area, near the W -points of the real Fermi
surface in aluminium over which the energy gap is dominantly determined by
the spin-orbit interaction

p = 0:7 � 10�3pF:

Thus, �q calculated on the sphere was equal to 2:7. To simplify the calcula-
tions SB supposed that the 48 R-disks were RANDOMLY distributed over the
sphere. Naturally, owing to this assumption the possible linewidth anisotropy
was omitted from the model.

Our model di�ers from the above mentioned one by a REGULAR AR-
RANGEMENT of the R-disks on the Fermi sphere. This disposition of the
R-disks corresponds most closely to the arrangement of the W -points neigh-
bourhoods on the real Fermi surface.

Using the reverse reconstruction of Harrison we obtain that 48 R-disks are
arranged in 5 layers (see Fig.2): 16 disks are in equatorial one and 8 disks are
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Figure 2: The schematic view of the free-electron Fermi surface in aluminium
with R-disks (the shaded areas). The direction of conduction electron move-
ment is shown by arrow. The characteristic angles used in our calculations are
indicated.
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in each of the remaining ones. The appropriate angles on the R-disks levels are
equal to �i

�1;:::;8 = arctan(1=2)
�9;:::;16 = �=2� arctan(1=2)

�17;:::;32 = �=2
�33;:::;40 = �=2 + arctan(1=2)
�41;:::;48 = � � arctan(1=2):

(4)

Individual electrons are assumed to be scattered randomly from point to point
on the Fermi sphere at rate 1=� . Between scattering events they move along
cyclotron orbits on the Fermi sphere with a linear velocity in quasimomentum
space,

j _pj = !cpF sin �;

where � is the angle between the electron quasimomentum p and the applied
�eld H(0; 0;H).

Now we can use the analytical "motional narrowing" procedure of the initial
g-factor distribution with reasonable facility.

3 The CESR linewidth calculations for model

Fermi surface.

The main parameter of the proposed theory is the magnitude of the typical
orbital segment length in p-space, !c�pF, traversed by an electron along cy-
clotron orbit between scattering events. This parameter determines the manner
in which motional narrowed linewidth arises. There are three di�erent temper-
ature regimes de�ned by !c�pF. In the high-temperature region (case A) the
conduction electrons are scattered on and o� the R-disks more rapidly than
they move on and o� the disks because of their cyclotron motion, and hence
the e�ects of cyclotron motion are negligible. An electron has no time to cross
completely the R-disk along cyclotron orbit before the next scattering event

!c�pF � p:

In the low temperature regime (case C) the conduction electron, on the con-
trary, can make few revolutions along a single cyclotron orbit before scattering
to a new orbit

!c� � 1:

The cyclotron motion now gives e�ective averaging over the full orbit of the g
variation associated with all traversed R-disks.

The virtue of the present model is the possibility of averaging in an inter-
mediate temperature regime (case B)

p� !c�pF � pF:
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Figure 3: The R-disk (the shade area). �i is the angle on the R-disk, �p is the
impact parameter, the line with arrows indicates the direction of the conduction
electrons movement.

Under these conditions the conduction electron passes along cyclotron orbit a
distance larger than a size of the R-disk. It may cross either no or one or several
R-disks completely, but it has no time (� < !c) to make even one revolution
along a single cyclotron orbit.

The correlation time for the narrowing is determined not by the time between
collisions, but the average time spent on the R-disks, which is now determined
only by the speed of the cyclotron orbital motion, not the collision rate. The
time � in Eq.(3) must be replaced by the disk transit time, which is approxi-
mately equal to p=(pF!c). As noted by SB, in this regime the linewidth varies
as !2s=!c and is therefore linearly proportional to the �eld at which the experi-
ment is performed, and a natural explanation is obtained for the experimentally
observed linear dependence of linewidth upon frequency.

Note the conclusions of SB about the frequency and temperature dependence
of the CESR linewidth in aluminiumare valid for our model. Therefore we focus
our attention on those new outcomes, which could not be obtained in indicated
work. To clarify this di�erence we will not change all parameters introduced by
SB: �g0; p; g; pF; !c, etc.

In the high-temperature regime (case A) the conventional result for motional
narrowing is appropriate (3). The linewidth does not depend upon the magnetic
�eld inclination angle �. We have the SB result

D
(�g)

2
E
= (�g0)

2 �
48�p2=4�p2F

�

A) �!(A) = �!
(A)
SB = 12

�
�g0
g

p

pF
!s

�2

� � � 12F2� (5)

with parameter F = (�g0=g)(p=pF)!s. Here and below �! denotes the contri-
bution of the motional averaged g anisotropy to the full CESR linewidth 1=T2,
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assuming a scalar g-shift rather than the tensor. Taking into account g-tensor
properties leads to an appearance of a correction factor of 2 [8, 15] in all the
linewidth expressions, see Eqs.(5), (10) and (15).

Firstly we examine our system for a case of Hkc:
In intermediate temperature region (case B) we have to take into account

the peculiar character of the conduction electrons movement.
Following SB the spin precession phase of an electron passed through the

R-disk relative to the mean phase of all of the spins is written as

�(�; �p) =

�
�g0
g
!s

�
2
�
p2 � �p2

� 1
2

!cpF sin �
(6)

where � is angle of orbit, �p is impact parameter (see Fig.3).
Let us determine the rate at which any given electron moving along the orbit

with polar angle � meets R-disk

R(�) =

�
!cpF sin � � 2pF=(4�p sin �

0

i); if � 2 (�i ���; �i +��)
0; if � =2 (�i ���; �i +��)

; (7)

where the angle �
0

i is equal to arcsin ((sin (�i ���) + sin (�i +��)) =2) ; �i is a
mean angle on the R�disk level, �� = 2arcsin (p=pF) ; 2p is the collision cross
section.

Using the fact that the rate at which the electrons gain the mean-square
precession phase error is then given by

d

dt



�2(t)

�
=

1

4�

�Z
0

2�R(�) sin �


�2(�; �p)

�
�p
d� (8)

and with the result of SB

�! =
1

2

d

dt



�2(t)

�
; (9)

where h:::i�pis the average �(�; �p) over impact parameters (�p � �p � p); we
get

B) �!(B) =
F 2��

24!c

48X
i=1

1

sin �i
(10)

with a parameter �� ' 2p=pF. The SB result di�ers from expression (10) and
may be written as

�!
(B)
SB =

12F 2

!c

�
p

pF

�
: (11)
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As a next step, let us consider the low temperature case. The CESR
linewidth is given by Eq.(3) and

�g(�; �p) = �g0
2
�
p2 � �p2

� 1
2

2�pF sin �
: (12)

The probability that the orbit with polar angle � in this case traverses a
R-disk is

P (�) =

�
1; if � 2 (�i ���; �i +��) ; i = 1; 2; :::;48
0; if � =2 (�i ���; �i +��) ; i = 1; 2; :::;48

: (13)

De�ning the mean-square deviation of g(p) from its mean value g



[�g(�; �p)]2

�
=

1

4�

�Z
0

2�P (�) sin �d�


[�g(�; �p)]2

�
�p
; (14)

we obtain by a straightforward calculation

C) �!(C) =
F2�

6�2

48X
i=1

ln
tan (�i0 =2)

tan (�i00 =2)
'

F2���

3�2

48X
i=1

1

sin �i
(15)

with �i0 (i00 ) = �i ���. SB have obtained

�!
(C)
SB =

12F 2

�

�
p

pF

�
: (16)

The expressions (10), (15) are valid for the case of Hkc or � = 0 (c is the
symmetry axis of crystal, see Fig.2). For arbitrary angle of the magnetic �eld
tilt it is necessary to substitute �i instead of �i into equations (7){(15), where
�i are found from next relationship

cos �i = cos �i cos � � sin �i sin � cos i (17)

here i = s +m�s is the angle in the plane of the R-disks layer with number
s = s(i) (see Fig.2). s is the polar angle de�ning the magnetic �eld direction
relative to the R-disk with m = 0 (2 = 4 = 1+�=8 = 3 +�=8 = 5+�=8),
m = m(i) = 0; 1; 2; : : : is the number of R-disk on a given layer, �3 = �=8 for
equatorial level and �s = �=4 for remaining ones.

Note, the expressions (10) and (15) in the case 0� �i � �� do not give a
good result, because expression (6) cannot be used. In this case we must use
the simple expression (3) with g = �g0.

The linewidth dependence upon the magnetic �eld inclination angle � is
calculated for typical values of !c� and corresponding curves are represented in
Fig.4.
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Figure 4: The theoretical CESR linewidth of aluminium versus angle � calcu-
lated with Eqs. (5), (10), (15) a) The low temperature regime. On the inset
there is the high temperature regime line. b) The intermediate temperature
regime.
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4 Discussion and conclusions.

Let us summarise.
In the high temperature region the linewidth is independent from the mag-

netic �eld direction. The conduction electrons di�usion over Fermi surface is
caused by various mechanisms of scattering. It makes insu�cient a considera-
tion of comprehensive structure of the Fermi surface and our results coincide
completely with the SB ones. Both results are shown in the inset at the right
upper corner of the Fig.4).

Two other cases are more interesting.
In the intermediate temperature region there are characteristic peaks at

values of � coinciding with appropriate angles determined by Eq. (4), (see Fig.4-
b). If we average expression (10) on the angle �, we can obtain approximately
the same result that could be directly derived from the SB expression (11)

1

�

�Z
0

�!(�)d� � �!SB: (18)

In the low temperature region the angle dependence is represented on the
Fig.4a). The mean value (18) coincides numerically with corresponding value
of the SB.

On the Fig.5 we represent the calculated CESR linewidth of aluminium
versus angle � for di�erent values i. Obviously, the linewidth dependence
on i is symmetric relatively �=8 and periodic with the period of �=4. We
also observe a symmetry of the shape of curves relatively the angle � = �=2.
There are �ve peaks within the � range (0, �) on angles coinciding with ones
determined by right sides expression (4). The peaks, which correspond angles
� = �=2 � arctan(1=2), are weakly expressed on angles 1 ' 0, �=8 ; the ones
have a maximum for angle 1 = �=4: The intensity of the peaks corresponding
angles � = arctan(1=2) and � = � � arctan(1=2) have inverse dependence.

To evaluate the temperature dependence of the CESR linewidth at high
temperatures we have to take into account the phonon-induced relaxation. Since
we have no di�erence with the model of SB in this regime, we will reproduce
their estimation of the phonon-induced contribution to the CESR linewidth,
�!ph below.

More detail estimation using the real Fermi surface structure near the W -
points yields �!ph = 1:5�10�4=� . The resultant expression for �!ph determined
from the �t with experimental data [8] is

�!ph =
1:5 � 10�4

�
(19)

Thus, at high temperatures we have two contributions to the CESR linewidth
caused by g anisotropy (5) and (19)

�!(A)g = �!(A) +�!ph: (20)
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Figure 5: The CESR linewidth as a function of angle �. Our model predicts
various behaviours for di�erent values of the angle  = 1.
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The scattering rate, � , is determined by the phonon one. It is well known, that
the last value varies as T 3

1

�
= pT 3:

The theoretical �t [8] has yielded p = 2:1 � 107sec�1K�3.
The temperature dependence of the CESR linewidth (or dependence upon

!c� ) is calculated using the equations (10), (15), (20) and it has qualitatively
the same character as the dependence of SB. Naturally, we have the close agree-
ment for the average values of Eq. (18) and we must use this dependence for
polycrystal nonoriented samples.

There are the followingmain experimental features (see corresponding �gure
from the SB work).

1) At high temperatures the experimental dependence of linewidth (� T 3) is
reproduced by (20). An apparent frequency dependence of the phonon spin-ip
scattering can be understood as a consequence of the motional narrowing model,
with the phonon-induced relaxation remaining independent of frequency.

2) There is the linewidth minimum at the intermediate temperatures. And
the minimum linewidth depends linearly on frequency, as indicated by (10).

The linewidth behaviour with temperature in our model agrees qualitatively
to experimental data too. For an extended discussion see mentioned paper of
SB [8].

Note a gap between estimated and observed linewidth is essentially in the
low-temperature region. At such conditions there is no quantitative agreement,
but the qualitative accordance occurs.

The pointed disagreement is easily explained by the simplicity of the pro-
posed model. The real Fermi surface of aluminiumhas several sheets pertaining
to di�erent bands. At low temperatures in high purity metals the conduction
electrons move on each Fermi surface sheet separately. Hence we must consider
the real g anisotropy over the real Fermi surface to obtain adequate results. The
same holds true not only for the temperature and frequency dependence of the
CESR linewidth, but angular one as well.

Note, in case of conduction electron small-angle scattering predominance
the equilibrium would be established separately within each of the Fermi sur-
face hulls. This would require that the characteristic time of scattering leaving
the conduction electron in its hull would be less than that of the interhull scat-
tering. In this situation one could take advantage of a model involving several
conduction electron groups.

To each of the electron groups one can ascribe such averaged characteristics
as the g-factor, the spin relaxation time �s, the momentum relaxation time � ,
and so on | depending on the model sophistication degree (see for instance a
model proposed for Al in work [14]). This model involves three mechanisms of
conduction electron connection: (1) conduction electron intergroup scattering
with frequency 1/�ij, (2) exchange interaction, and (3) conduction electrons
di�usive reection from the boundary.
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Note that in paper [4], dedicated to the CESR experimental research in
Zn, the magnetic breakdown was pointed as a possible intergroup connection
mechanism (see too [5, 6]).

Nevertheless, we think that the present model may be useful for qualitative
understanding the spin relaxation processes connected with g anisotropy. The
clear physical ideas lie in the model origin.

The model of reconstructed Fermi surface is possible to use in organic con-
ductors in which intensive CESR investigations are carried out [7] and their
Fermi surfaces consist of several sheets too. These materials are interesting for
explorers from their superconducting properties with the transition temperature
Tc up to 15 K [16].

We show, that in low and intermediate temperature the g-value anisotropy
over Fermi sphere leads to the angular dependence of CESR linewidth. Unfortu-
nately, as far as we know, there is no experimental data of angular dependence
of CESR linewidth in Al. In works [17]{[24] only temperature dependence of
CESR linewidth in mono- and polycrystal or the characteristics of the thin �lms
were investigated.

Nevertheless, we believe that our model is qualitativy relevant to reality.
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