
 
 

Multiple Quantum NMR Dynamics  
in Spin Systems in Dipolar Ordered State 

S.I. Doronin1, E.I. Kuznetsova1,*, E.B. Feldman1, S.D. Goren2, G.B. Furman2 
 

1 Institute of Problems of Chemical Physics of RAS, Chernogolovka, 142432, Russia 
2 Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel 

* E-mail: kuznets@icp.ac.ru 
 

 
Received November 18, 2006 
Revised November 30, 2006 
Accepted December 3, 2006 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Volume 8, No. 1,  
pages 10-14, 2006 

 
 

 http://mrsej.ksu.ru

http://mrsej.ksu.ru/


S.I. Doronin, E.I. Kuznetsova, E.B. Feldman, S.D. Goren, G.B. Furman 

Magnetic Resonance in Solids. Electronic Journal. Vol.8, No 1, pp. 10-14 (2006) 11

Multiple Quantum NMR Dynamics in Spin Systems in Dipolar Ordered State 
 

S.I. Doronin1, E.I. Kuznetsova1,*, E.B. Feldman1, S.D. Goren2, G.B. Furman2

1 Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, 142432, Russia 
2 Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel 

* E-mail: kuznets@icp.ac.ru 
 

Multiple quantum (MQ) NMR dynamics in a system which was prepared initially in dipolar ordered state is 
investigated with analytical and numerical methods for linear open chains of nuclear spins 1/2 coupled by dipole-dipole 
interactions. We show that the phases of the signals of MQ coherences are shifted by π/2 with respect to the signals of 
the ordinary MQ NMR experiment. The sum of the intensities of MQ coherences of arbitrary opposite orders in this 
experiment is equal to zero. Many-spin correlations are created faster in the such experiments and can be used for 
investigations of many-spin dynamics of nuclear spins in solids.  
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Multiple Quantum NMR Dynamics in Spin Systems in Dipolar Ordered State 

Multipe-quantum (MQ) NMR spin dynamics in solids [1] is a powerful tool for the investigation of structure and 
dynamical processes in solids, counting the number of spins in impurity clusters [2] and the simplification of ordinary 
NMR spectra [3]. Although MQ NMR was successful in a lot of applications and experimental methods of MQ NMR 
have been developed adequately, the theoretical interpretation of many-spin MQ NMR dynamics is restricted by the 
phenomenological approach [1]. A systematic quantum-mechanical approach was developed [4]-[6] only for one-
dimensional systems in the approximation of nearest neighbor dipolar interactions. Up to now the thermodynamycal 
equilibrium density matrix in a strong external magnetic field has been considered as the initial condition for these 
experiments and theoretical interpretations. Recently, it has been suggested [7] to consider the dipolar ordered state as 
the initial state for such experiments. It is well known that the dipolar ordered state can be prepared using the method of 
adiabatic demagnetization in a rotating frame (ADRF) [8,9] or with the Jeener-Brokaert (JB) two-pulse sequence [8,10]. 
As a result of such initial condition, many-spin correlations appear faster than in the ordinary MQ NMR experiments in 
solids [1] and some peculiarities of MQ dynamics can be investigated with these experiments. Of course, it is necessary 
to make some changes in the scheme of the standard experiment in order to obtain non-zero signals of MQ coherences. 

In the present work we consider MQ NMR dynamics when the initial condition is determined by the dipolar 
ordered state. However, the observable is the longitudinal magnetization as in the usual MQ experiments. MQ NMR 
dynamics in the suggested experiment is strongly different from the standard one [1]. In particular, the sum of 
intensities of MQ coherences of arbitrary opposite orders equals zero in contrast to the usual MQ NMR experiments 
where these intensities are equal. It is interesting to underline that the phases of signals of MQ coherences are shifted 
over π/2 in comparison with the signals of the standard experiments [1]. Computer simulations of such experiments for 
linear chains containing up to eight spins are presented in this paper. 

We consider a system of nuclear spins (s = 1/2) coupled by the dipole-dipole interaction (DDI) in a strong external 
magnetic field. The secular part of the DDI Hamiltonian [8] has the following form 
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is the coupling constant between spins j and k, jkr  is the distance between spins j and k, γ is the gyromagnetic ratio, jkθ  
is the angle between the internuclear vector  and the external magnetic field  is directed along the z-axis. jkr 0H jI α  is 

the projection of the angular spin momentum operator on the axis α (α =x, y, z); jI +  and jI −  are the raising and lowering 
operators of spin j. 

The basics scheme of MQ NMR experiments consists of four distinct periods: the preparation, free evolution, 
mixing and detection [1]. MQ coherences are created by the multipulse sequence consisting of eight-pulse cycles on the 
preparation period [1]. In the rotating reference frame [8] the average Hamiltonian, describing spin dynamics in the 
preparation period can be written as [1]: 

 (2) ( 2)
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where  
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The density matrix of the spin system at the end of the preparation period is 
 ( ) ( ) (0) ( ),U Uρ τ τ ρ τ+=  

where 
  (2) ( 2)( ) exp( ( ))U i H Hτ τ −= − +

and (0)ρ  is the initial density matrix of the system. Usually the thermodynamic equilibrium density matrix is used as 
the initial one for MQ NMR experiments. Here we consider MQ NMR dynamics with the initial dipolar ordered state 
when the Hamiltonian of the system is determined by Eq.(1). 

We introduce yϕ -pulse turning spins around the axis y on the angle π/4 after the preparation period. Without this 
additional pulse it is not possible to obtain a nonzero signal at the end of the MQ NMR experiment. As a result, we have 
the following expression for the observable signal  

 { }( , ) ( ) ( ) ( ) ( )y y z zi I i I i I i I
z dz zI t Tr e U H U e e U I U eϕ ϕ δ δτ τ τ τ τ− −+ += ,  (3) 
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where δ is the frequency offset on the evolution period of the duration t which is a result of applying the TPPI method 
[1]. 

Density matrix ( )MQρ τ  at the end of the preparation period can be represented as follows: 

 ( ) ( ) ( ) ( )MQ z n
n

U I Uρ τ τ τ ρ= = τ∑ . (4) 

The term ( )nρ τ  is responsible for MQ coherence of the n-th order. The observable signal can be presented as 

 * *( , ) ( ) ( ) ( )in t in t in t
z n n

n n n
I t e J e J e Jδ δ δ

nτ τ τ− −
−= = =∑ ∑ ∑ τ .  (5) 

The intensity, ( )nJ τ , of MQ coherence of the n-th order is 

 { }( ) Tr ( ) ( )n nJ Aτ τ ρ τ= , 

where 

 ( ) ( ) ( )y yi I i I
dzA e U H U eϕ ϕτ τ τ− += . 

From (5) it follows that  
 *( ) ( )n nJ Jτ τ−= . 

Expanding the density matrix, ( )MQρ τ  in the Taylor series over the parameter t, one can prove [11] that 

 ( ) ( ) 0n nJ Jτ τ−+ =   (6) 

Eq.(6) allows us to conclude that ( )nJ τ  is imaginary for all 0n ≠ . Thus, the phases of the MQ NMR coherences in this 
experiment are shifted by π/2 from the signals of usual MQ NMR [1]. It is well-known that in the usual MQ NMR 
experiments the sum of the intensities of all MQ coherences does not depend on time [12]. Here this law has a specific 
form. According to Eq.(6) the sum of intensities of orders –n and n is equal to zero for all n. 

The numerical calculations are performed for MQ dynamics of linear chains consisting of 6 and 8 spins. The DDI 
constant of the nearest neighbors is chosen to be D = 1 с-1. Then the DDI constant of spins j and k is 

3/ | |jkD D j k= − .We introduce normalized intensities of MQ coherences . The 
dependence of normalized intensities of MQ coherences on dimensionless time in spin chains containing six and eight 
spins is presented in Fig.1. It is clear that MQ coherence of the sixth order in a linear chain of six spins appears little 
earlier than in the usual MQ NMR. This can be seen in the inset of Fig.1a. An analogous tendency takes place for the 
linear chain containing eight spins (Fig.1b). This peculiarity is connected with the initial dipolar ordered state. The 
numerical calculations confirm the results obtained in the previous section. In particular, the computer simulations yield 
the following: i) all intensities, 

{ } { }1/ 22 2Im / ( ) ( )n z dzJ Tr I Tr H

( 0)nJ n Xσ≠ , are imaginary, ii) 0 0J ≡ , 0n nJ J−+ = . The growth of MQ coherences in 
time occurs in accordance with the condition 0n nJ J−+ =  for all . n

Thus, the growth of MQ coherences in the systems with dipolar ordered state has some peculiarities which are 
related to the initial spin correlations. The spin-lattice dipolar relaxation in such systems is slower than the Zeeman one 
and it does not hamper the investigations of the MQ NMR coherences of high orders. 
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Fig.1. (a) time dependence of the intensities of the sixth 
order MQ coherences in a linear chain of six spins 
coupled by the DDI: the intensity of MQ coherence 
of the sixth order (solid) for (0) I ; 6Im( )Jρ = z −  

(dash) for (0) dzHρ = . 
(b) time dependence of the intensities of the sixth 
order MQ coherences in a linear chain of eight spins 
coupled by the DDI : the intensity of MQ coherence 
of the sixth order (solid) for (0) I ; 6Im( )Jρ = z −  

(dash) for (0) dzHρ = . The intensity of MQ 
coherence of the eighth order is equal to 0. The 
insets show that the MQ coherence appears some 
earlier than in the usual MQ NMR. 
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