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The process of self-diffusion of particles confined to porous solids is studied for time intervals cor-

responding to particle displacements shorter than the characteristic pore size. The solid matrix

is modeled as a (random) potential field with an infinitely large potential within the solid which

decays to zero at distances of the order of a few particle sizes from the pore walls. Diffusion

of particles in the thus created potential field is described by the Smoluchowski diffusion equa-

tion. It is shown that, for short diffusion times, the resulting equation for the time-depended

diffusivity reproduces that earlier obtained in the literature [Mitra et al., Phys. Rev. Lett.

68, 3555 (1992)], but with the numerical constant differing by factor 2. The conditions under

which this discrepancy arises are highlighted and discussed.

PACS: 76.30.-v, 68.65.-k
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1. Introduction

Diffusion, or erratic thermal motion of molecules, is an ubiquitous phenomenon in nature, which

often plays a key role in variety of bio- or physico-chemical processes. Under equilibrium con-

ditions and in spatially homogeneous and isotropic systems, the Green’s function, i.e. the

probability density to find a particle at a distance r from its origin at a time instance t, is a

Gaussian function. For long enough times, this leads to the fact that the mean squared displace-

ments 〈r2(t)〉 grow linearly with time [1]. This regime is often referred to as normal diffusion. In

many cases, however, diffusion occurs in inhomogeneous environments, with the most prominent

examples being fluid transport in biological cells or porous solids. Under these conditions, some

part of space becomes inaccessible for the diffusing particles, rendering the process of diffusion to

deviate from the normal behavior on the length scales comparable to characteristic sizes ξ of the

structural inhomogeneities. In porous media, which are in the focus of this work, ξ can be asso-

ciated with typical pore sizes. In this anomalous regime of diffusion, 〈rr(t)〉 ∝ tk with 0 < k < 1,

hence referred to as sub-diffusion (notably, k may also be a function of time). For permeable

media, the normal diffusion behavior can further be recovered at length scales notably exceed-

ing ξ. Understanding the relationships between diffusion processes and structural properties

of porous materials is of particular importance for predicting molecular transport in practical

applications, such as oil recovery, water infiltration, etc., and for structural characterization [2].

In a most direct way, the mean squared molecular displacements can be measured using the

pulsed field gradient technique of nuclear magnetic resonance (PFG NMR) [3–5]. This method

is based on the positional encoding of the spin-bearing molecules and their subsequent decoding

using short pulses of magnetic field gradients. Between these two pulses, a well-controlled in
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the experiment time t (also referred to as diffusion time) is given for system to evolve. If

the molecules during the time interval t perform purely stochastic, translational motion, the

measured signal intensity S is found to be attenuated by the factor

S(q, t)/S(0, t) = exp

{

−1

2
q2〈r2(t)〉

}

, (1)

where q is the wave number, which is controlled in the experiment. Alternatively, (1) may also be

considered as a first term in the expansion in case if the Green’s function cannot be approached

by a Gaussian function [5]. Typically, the experimentally measured quantity 〈r2(t)〉 is expressed
in terms of the effective diffusion coefficient De, which is defined via the Einstein equation

De(t) = 〈r2(t)〉/6t. (2)

In PFG NMR, one typically explores diffusion processes in the time scale 10−3 . t . 10 s.

Hence, for low molecular liquids and on the time scale of the PFG NMR measurements, De, as

measured using this technique and as defined by (2), turns out to be, to good accuracy, constant

and to coincide with the bulk self-diffusivity D0. In porous materials, however, De is found

to decrease with increasing time for diffusion times t . R2/D0, where R is the characteristic

pore size [6]. This behavior can easily be revealed by combining the equations (1) and (2). The

time dependence of the diffusivity results from the fact that the solid matrix is impermeable

for the diffusing particles, giving rise to the reflecting boundary conditions at the pore walls.

One may expect, therefore, that the effective diffusivity can be a function of the surface area,

at which the reflection of the particle fluxes occurs. In the context of the PFG NMR diffusion

measurements of fluids in porous solids, the understanding of the relationships between the

structural parameters of porous media and the time-dependent diffusivity was put forward in

Refs. [7–9]. In particular, by considering the classical Fick’s diffusion equation with the boundary

condition posing zero gradient of the Green’s function at the pore walls it was shown that, for

sufficiently short diffusion times, De is indeed determined by the surface-to-volume ratio S/Vp

of the pore space [7]:

De(t) = D0

(

1− 4

9

S

V

√

D0t

π
+O(D0t)

)

. (3)

This result has further been reproduced in a number of analogous studies (see, e.g., [6, 10]).

The approach based on (3) has become a robust and widely used tool for the determination of

the S/Vp ratio for different porous materials by measuring the time-dependent diffusivity using

PFG NMR [11–18]. It may be noted, however, that in several works an overestimation of the

surface-to-volume ratio by a factor of about 2 using (3) was reported [19,20].

The effect of the solid matrix upon diffusing particles can alternatively be described on

the basis of the Smoluchowski diffusion equation [21]. In this case, the pore space and the

solid are modeled as the sub-spaces with low and infinitely large potentials U(r), respectively,

with a smooth transition between them. Thus, close to the pore walls, the moving particles

experience a change of the potential, which can effectively be treated as the action of a force

-∂U(r)/∂r. Diffusion of particles in the presence of a force field generated by the solid matrix,

which is generally described by the Smoluchowski diffusion equation, was already considered

in the literature in connection with PFG NMR experiments [22, 23]. In this work, we use this

approach to study the short-time diffusion behavior of low-molecular liquids in porous materials.
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Because in this way the interaction of molecules with the solid can be described on a more realistic

level, the main goal of this work was to establish how it may render the results obtained earlier

using classical Fick’s diffusion equations.

2. Results

In this work, the influence of the solid matrix on the confined molecules was described by means

of an effective random potential U(r) induced by the heterogeneous medium. Within the solid,

which effectively plays a role of obstacles for the Brownian particles, U(r) → ∞, while in the

pore space U(r) → 0. At the pore walls, the potential falls to zero within the surface layer of

the order of a few particle sizes. This length scale we denote by a0 and it may be associated

with the thickness of a surface layer having differen physical properties as compared to the bulk

phase. In all physically relevant cases, this transition is considered to be smooth. We consider

only the quenched fields U(r), which do not vary in time, i.e., the molecular or particle mass is

considered to be negligibly small as compared to the mass of the solid, thus the motion of the

latter can be ignored.

The probability density W (r; t) for the molecular displacements, namely the Green’s func-

tion, satisfies the Smoluchowski equation

∂

∂t
W (r; t) = D0

∂

∂r

[

∂

∂r
− 1

kT
f(r)

]

W (r; t), (4)

where D0 is the diffusivity in the bulk liquid, f = −∂U(r)/∂r is the force induced by the random

potential, k is the Boltzmann constant, and T is temperature. Note that the differential operator

on the right hand side of (4) is not a self-adjoint one. This makes the problem rather complex

from the mathematical point of view. To simplify the problem, we introduce a new function

Ψ(r, t) which is related to W (r, t) via

Ψ(r, t) = W (r, t) exp

{

U(r)

2kT

}

. (5)

With (5), the Smoluchowski equation (4) becomes

∂

∂τ
Ψ(r; t) = ∆Ψ(r; t) +

1

2

[

∆Ũ(r)− 1

2
(∇Ũ(r))2

]

Ψ(r; t), (6)

where τ = D0t and Ũ(r) = U(r)/kT .

With the Green’s function known, the molecular mean squared displacements (MSD) can

readily be obtained:

〈r2(t)〉 = 1

Z

∫ ∫

d3r1d
3r0(r1 − r0)

2W (r1, r0; t) exp

{

−U(r0)

kT

}

, (7)

where the statistical integral

Z =

∫

d3r exp {−U(r)/kT} = Vp (8)

is simply equal to the total volume of the pore space. Notably, the Green’s function in (7)

is the density probability to find a particle at r1 at the time instance t if at zero time it was

located at r0. The Boltzmann factor in the integral on the right hand side of (7) accounts for the

equilibrium distribution of the particles at t = 0. The effective diffusivity De, which is measured

by PFG NMR, is related to the MSDs via (2).
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It has earlier been shown [23] that (4) can be solved to yield De:

De(t) = D0

[

1− D0

3t

(

1

kT

)2 ∫ t

0

dt1

∫ t1

0

dt2〈f(t2)f(0)〉
]

, (9)

where the force-force autocorrelation function 〈f(t)f(0)〉 is defined as

〈f(t)f(0)〉 = 1

Z

∫ ∫

d3r1d
3r0W (r1, r0; t) exp

{

−U(r0)

kT

}

∂

∂r1
U(r1)

∂

∂r0
U(r0). (10)

By substituting W (r1, r0; t), in analogue with (5), with

W (r1, r0; t) = exp

{

−U(r1)

2kT

}

Ψ(r1, r0; t), (11)

(10) becomes

〈f(t)f(0)〉 = (2kT )2

Z

∫ ∫

d3r1d
3r0

∂

∂r1
exp

{

−U(r1)

2kT

}

Ψ(r1, r0; t)
∂

∂r0
exp

{

−U(r0)

2kT

}

. (12)

Notably, Ψ(r1, r0; t) satisfies (6). The formal solution of the latter equation can be given as

Ψ(r1, r0; t) = exp
{

τL̂1

}

Ψ(r1, r0; 0), (13)

where the Liouville operator L̂1 is

L̂1 = ∆1 +
1

2

[

∆1Ũ(r1)−
1

2
(∇1Ũ(r1))

2

]

. (14)

The subscript 1 in (14) implies that the differentiation is performed over the position coordinates

r1. By noting that W (r1, r0; 0) = δ(r1 − r0), where δ(x) is the Dirac delta function, and by

using (11), the autocorrelation function 〈f(t)f(0)〉, as given by (12), can finally be given as

〈f(t)f(0)〉 = (2kT )2

Z

∫ ∫

d3r1d
3r0

(

∂

∂r1
e−

U(r1)
2kT

∂

∂r0
e−

U(r0)
2kT

)

exp
{

τL̂1

}

δ(r1 − r0). (15)

The major difficulty in evaluating (15) is imposed by the necessity to calculate the function

W̃ (r1, r0; t) ≡ exp
{

τL̂1

}

= exp

{

D0t

(

∆1 +
1

2kT

[

∆1U(r1)−
1

2kT
(∇1U(r1))

2

])}

, (16)

which cannot be done in the general case.

Let us therefore to consider an approximation, in which we neglect the terms containing

the potential energy in the operator L̂1 (14), i.e. assuming that L̂1 = ∆1. Under this condition,

W̃ (r1, r0; t) is nothing else than the Green’s function for free, unrestricted diffusion, i.e.

W̃ (r1, r0; t) = exp {τ∆1} =

(

1

4πD0t

)

3/2

exp

{

−(r1 − r0)
2

4D0t

}

. (17)

The approximation considered turns out to be a reasonable one for the relatively large pore sizes

(R >> a0) and for the observation times t satisfying the following condition

τR =
R2

D0

≫ t ≫ a2
0

D0

= τ0. (18)
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In (18), τ0 is a typical time during which the particles diffuse through the surface layer in which

they experience a repulsive interaction with pore walls and τR is the time to diffuse over distances

of the order of the pore sizes. Note that the overall behavior of 〈f(t)f(0)〉 is mainly determined

by the ensemble of particles which, at initial times, were residing near the pore walls or within

the surface layer a0. In this respect, the condition 18 ensures that (i) statistics of the particle

trajectories between two successive encountering events of the surface layers is described by (17)

and (ii) surface orientation between these two points does not change appreciably. With (17),

the autocorrelation function simplifies to

〈f(t)f(0)〉 =

=
(2kT )2

Z

(

1

4πD0t

)3/2 ∫

d3r1d
3r0

(

∂

∂r1
e−

U(r1)
2kT

∂

∂r0
e−

U(r0)
2kT

)

exp

{

−(r1 − r0)
2

4D0t

}

.
(19)

Let us now to fix r0 and to introduce a local coordinate system with Z(r0) axis being perpen-

dicular and X(r0) and Y (r0) axes being parallel to the nearest pore walls, respectively. We may

further assume that the potential U(r) varies only along Z(r0) direction, but not along X(r0)

and Y (r0). With the condition (18), (19) can be integrated over the coordinates of the position

vector r1 which are parallel to X(r0) and Y (r0):

〈f(t)f(0)〉 =

=
(2kT )2

Z

(

1

4πD0t

)

1/2 ∫

dz̃1dz̃0dx̃0dỹ0

(

∂e−
U(z̃1)
2kT

∂z̃1

∂e−
U(r0)
2kT

∂z̃0

)

exp

{

−(z̃1 − z̃0)
2

4D0t

}

.
(20)

Note that have introduced a curvilinear coordinate system x̃i(r)0), ỹi(r)0), and z̃i(r)0), which

is a function of only the initial position vector r0, but not r1 due to (18). Indeed, as it has

been discussed in the preceding paragraphs, for the time intervals considered the global surface

curvature can be neglected.

The scalar product in the brackets in the integral on the right side hand of (20) is non-

zero only within the surface layer close to the pore walls, i.e. when |z̃i(r)0)| < a0, where the

gradient of the potential U(r) has a non-zero value. Because D0t >> a2
0
, we may further use an

approximation

exp

{

−(z̃1 − z̃0)
2

4D0t

}

≈ 1. (21)

This allows to integrate (20) over the z̃i variables:
∫

dz̃i
∂

∂z̃i
e−

U(z̃i)

2kT = 1. (22)

Integration over x̃i(r)0) and ỹi(r)0) yields the total surface area S of the pore walls,
∫

dx̃0(r)0)dỹ0(r)0) = S. (23)

With (8), (22), and (23), 〈f(t)f(0)〉 is obtained as

〈f(t)f(0)〉 = (kT )2
S

Vp

2√
πD0t

. (24)

Finally, substituting (24) into (9), results in the short-time effective diffusivity

De(t) = D0

(

1− 8

9

S

Vp

√

D0t

π

)

, (25)

which is compliant with the previously derived results and differs only by the numerical constant

8/9, as compared to 4/9 in (25).
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3. Discussion and conclusions

The diffusivity behavior at short times, as given by (3), was derived in [7] using the Fick’s

diffusion equation. In this approach, the existence of the impermeable pore walls is accounted

for by introducing specific boundary conditions, namely by letting no flux through the pore walls

or by equating the gradient of the Green’s function in the normal direction to the pore walls to

zero, ∂W (r; t)/∂rn=0. In contrast, in this work the existence of the pore walls is considered on a

more fundamental level by considering Brownian particles diffusing in a force field generated by

the solid matrix, i.e. by applying the Smoluchowski diffusion equation. The penalty is, however,

the complexity of the equations arisen, which cannot be solved for arbitrary potential fields. It

is therefore certain approximations, e.g. as given by (17), have been considered. Their rigorous

justification remains however under discussion.

Irrespective of the approximations used, the result obtained in this study can be considered

as a rigorous upper-bond solution for the numerical constant in (25). This can be shown by

taking into account the terms in the operator L̂1 (14), which were neglected upon the derivation

of (25). Indeed, it turns out that the integral

∫

√
D0t

−
√
D0t

dz̃1

(

∂2U(z1)

∂z2
1

− 1

2kT

(

∂U(z1)

∂z1

)2
)

≈ − 1

2kT

∫

√
D0t

−
√
D0t

dz̃1

(

∂U(z1)

∂z1

)2

≤ 0 (26)

appears to be negative. This means that the Green’s function (16) will decay faster as compared

to that given by (17). The faster Green’s function decay, the higher is the effective diffusivity,

implying a lower numerical constant in (25).

In the light of the discrepancy established between the results obtained with the two ap-

proaches, (3) and (25), it is instructive to show under which conditions (3) can be obtained

using the Smoluchowski equation. Because we are concerned with the time intervals satisfying

(18), the Brownian particles can displace by the distances
√
D0t much smaller than the typical

curvature R of the pore walls. Hence diffusion parallel to the pore walls can be considered

unaltered by the presence of the solid matrix and described by the Green’s function for free

diffusion. This justifies that the integration over the x̃1(r0) and ỹ1(r0) variables in (19), i.e.

the validity of (20). On the other hand, the times considered are much longer than the typical

times τ0 ≈ a2
0
/D0 the particles spend within the surface layers where their interact with the

pore walls. It is therefore the functional form of the Green’s function in the direction collinear

with z̃1(r0) can be approached by the Green’s function for a half-space convoluted with the

equilibrium Boltzmann distribution, i.e.

Wz(z1; t) =
2√

4πD0t
exp

{

− z2
1

4D0t

}

exp

{

−U(z1)

kT

}

. (27)

With (27) and (10) one can readily obtain (3). In a similar way, (3) has earlier been obtained [24].

The derivation presented in the preceding paragraph poses an important question about

which of the approximations used, (17) or (27), can better describe the dynamics of the Brownian

particles confined to porous solids. This question can be addressed by either performing diffusion

experiments using well-characterized porous materials or by computer simulation studies. In the

former case, special care has to be taken to obtain accurately the surface-to-volume ratio of the

porous material and to properly account for the surface relaxation effects [8, 25, 26], which can

be challenging problems. These difficulties can readily be excluded in computer simulations,

e.g. in molecular dynamics studies, in which all relevant parameters can be controlled and the

applicability of (17) and (27) can be verified. This work is under progress.
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