
 
 

  
 

 
Volume 17,  

Issue 1 
Paper No 15102, 

1-5 pages 
2015 

 

 
 http://mrsej.kpfu.ru 

 http://mrsej.ksu.ru 

ISSN 2072-5981



 

Established and published by Kazan University  
Sponsored by International Society of Magnetic  
                                                     Resonance (ISMAR) 
Registered by Russian Federation Committee on Press, 
                                                               August 2, 1996 

            First Issue was appeared at July 25, 1997 
 

© Kazan Federal University (KFU)* 
 

"Magnetic Resonance in Solids. Electronic Journal" (MRSej) is a 
peer-reviewed, all electronic journal, publishing articles which meet 

the highest standards of scientific quality in the field of basic 
research of a magnetic resonance in solids and related phenomena. 

MRSej is free for the authors (no page charges) as well as for the 
readers (no subscription fee). The language of MRSej is English. 
All exchanges of information will take place via Internet. Articles 

are submitted in electronic form and the refereeing process uses 
electronic mail. All accepted articles are immediately published by 
being made publicly available by Internet (http://MRSej.kpfu.ru).  

 

                                                           
* In Kazan University the Electron Paramagnetic Resonance (EPR) was discovered by 

Zavoisky E.K. in 1944. 

Editors-in-Chief 
Jean Jeener (Universite Libre de 

Bruxelles, Brussels)  
Boris Kochelaev (KFU, Kazan)  

Raymond Orbach (University of 
California, Riverside)  

 
 
 
 
 
 
 
 
 
 

Executive Editor 
Yurii Proshin (KFU, Kazan) 

mrsej@kpfu.ru  
editor@ksu.ru 

Editors 
Vadim Atsarkin (Institute of Radio 

Engineering and Electronics, Moscow)  
Yurij Bunkov (CNRS, Grenoble)  

Mikhail Eremin (KFU, Kazan)  
David Fushman (University of Maryland, 

College Park) 
Hugo Keller (University of Zürich, Zürich)  
Yoshio Kitaoka (Osaka University, Osaka)  

Boris Malkin (KFU, Kazan)  
Alexander Shengelaya (Tbilisi State 

University, Tbilisi)  
Jörg Sichelschmidt (Max Planck Institute for 

Chemical Physics of Solids, Dresden) 
Haruhiko Suzuki (Kanazawa University, 

Kanazava)  
Murat Tagirov (KFU, Kazan)  

Dmitrii Tayurskii (KFU, Kazan) 
Valentin Zhikharev (KNRTU, Kazan) 



Magnetic Resonance in Solids. Electronic Journal. 2015, Vol. 17, No 1, 15102 (5 pp.) 1 

The method of secondary quantization in the strong bond approximation 
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Expressions for the calculation of the Fourier transform of the direct Coulomb interaction of electrons 
have been derived in the method of strong bond. It was shown that in the elaborated method it is not 
necessary to spread out nuclear charges over the crystal as it is done in the case of delocalized 
electrons. 
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1. Introduction  

Experimental data on the hyperfine (HF) and supertransferred hyperfine (STHF) structure in the case 
of impurity centers, and also nuclear magnetic resonance (NMR) data give direct information about 
the electron structure of studied crystals, i.e., wave functions of electrons. For example, in [1-4] 
experimental STHF and NMR data for diamagnetic ions were considered theoretically in a series of 
crystals. Hartree-Fock functions of free ions are used in calculations, since they are a good zero 
approximation in the case of ion crystals. At the same time, under doping conductivity, 
superconductivity, strong magnetoresistive dependence, i.e., properties of high practical importance, 
appear in a series of similar crystals. Systems appearing at such doping are systems with strong 
electron correlations, for which the method of strong bond is good zero approximation. It should be 
expected that processes of virtual transitions of electrons found in the works cited above should be 
manifested also in NQR and NMR experiments [5-7] in these systems. However, unlike [1-4], where 
the calculations were performed on localized orbitals, the method of strong bond leads to necessity of 
calculations of matrix elements depending on wave vectors of the Brillouin zone. The main difficulty 
arises during the calculation of matrix elements of two-particle operators, i.e., the Coulomb interaction 
of electrons. In this work it was shown by the example of the direct Coulomb interaction of electrons 
(or holes), the states of which are described by Bloch wave functions, that this problem can be solved 
in the general form. It should be noted that to date the Fourier transform of the Coulomb interaction of 
electrons in a crystal is written from phenomenological considerations (see, e.g., [8]). Expressions 
derived in this work make it possible to derive exact expressions for Fourier transform of the Coulomb 
interaction of electrons in the crystal, if ion orbitals are written in the Gauss basis. It is also noted that 
the method under development makes it possible to consider systems having, e.g., infinite sizes over x, 
y axes, and the finite number of unit cells over the z axis.  

2. General part 

Using results [9], it is possible to transfer mathematically strictly from the representation of secondary 
quantization on localized functions with partly non-orthogonal one-particle basis to the representation 
of secondary quantization with the one-particle basis of Bloch functions. Then the operator of the 
Coulomb interaction of electrons is written in the form 

 
1 2 2 1, , , , 1 2 2 1 2

1
, , , , . .

4
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  2 1 2
2 1 2, , , , , ; , , ; , .i i ie g e e               k q n k p k m

n,p,m

k q k k 0 n p m  (3) 

Here , , , ...    are quantum numbers of orbitals of ions of the unit cell ordered in a selected way, 

,k q  are wave vectors of the Brillouin zone, , , ...n m  are radius-vectors of unit cells, 0  is the radius-

vector of the unit cell in the origin of coordinates, g is the Coulomb interaction of electrons. N is the 
number of unit cells in the volume with cyclic boundary conditions. 

The matrix element   1
, ,I S n 0  is the matrix element of the matrix inverse to the matrix of 

overlapping integrals of orbitals of ions of the crystal. Such matrices are called cyclic owing to the periodic 
structure of the crystal. Methods of calculations of matrices inverse to the cyclic matrices are given, e.g., in 

[10, 11]. Thus, there arises the problem of the calculation of matrix elements of the form (3). 
As the first step, it is natural to consider matrix elements of the direct Coulomb interaction of 

electrons, i.e., satisfying conditions , , , .       p 0 n m  Then (3) has the form  

 , , , ; , , ; ,ie g        qn

n

q 0 n 0 n . (4) 

Let the quantum numbers   determine the wave function of the ion with the radius-vector jr  in the 

unit cell, and the quantum numbers   determine the function of the ion with the radius-vector pr  in 

the unit cell. Then the matrix element (4) can be written as 

            
1

1 2 1 2 1 2 1 2, , exp .p ji d d          
       

n

q qn r r r r n r r r r r r  (5) 

Hartree-Fock functions of electrons of free ions  nlm r  can be expanded over the finite Gauss basis 

and present in the form 
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1
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We introduce functions 
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All quantities in (7) were determined above. Double indices, if the index is not indicated, mean 
summation as usual.  

It is easy to see that each matrix element of the form (5) can be presented by the finite sum of 
functions (7) with coefficients determined by the wave functions. 

The further course of the calculations, i.e., integrations and transformation to the pulse 
representation is performed analogous to that published in [12]. 

The Coulomb interaction, the same as in [12], is written in the form 

  2 2

0

1 2
expdv v





      r R
r R

. (8) 

The second transformation analogous to formulas (6) from [12] has the form 

     112 2 21ik jl ik jlv u u   


   , (9a) 
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      
3 1
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where ,ik i k jl j l         . Then for functions (7) we obtain expression 
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where cv  is the volume of the unit cell, g  is the vector of the inverse lattice, 
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Functions  , ,f d n G  are determined in [12, 13] 
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3. Coulomb interaction of p-electrons 

Let one Bloch function be formed by the zp  wave function of the electron of the ion with the radius-

vector jr  in the unit cell, and the second Bloch function be zp  wave function of the electron of the ion 

with the radius-vector pr  in the unit cell. The Fourier transform of the Coulomb interaction of these 

Bloch functions determined by functions (10) has the form 
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Expression (12) determines the interaction between two electrons in the crystal. At the same time, 
owing to the electroneutrality of the crystal there has to be the interaction between the electron and 
nuclei of the crystal, which makes the energy of the crystal finite. 

To this end, we consider the limiting value (12) when  g q  tends to zero. Then 

        
 

53 15
22 22

2

3 1 3 1 1
, , .

2 8z j z p z j z p i j j l
c ik jl
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 r r q r r
g q

 (13) 

We consider the interaction between the selected orbital zp  of the ion with the radius-vector jr  in the 

unit cell and unit positive charges in the sites pr  of the unit cell. Then according to [12] we have 
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Expression (14) at g tending to zero has the form 
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But in (13) the quantity 

 

51
223 1

1
8z z j l

jl

p p b b



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 
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Thus, expressions (13) and (15) are cancelled when  g q  and g , respectively, tend to zero and the 

energy of the crystal remains finite, since the sum of expressions (12) and (14) is converging.  

4. Conclusion 

In this work, the method of secondary quantization for calculations in the strong bond approximation 
is developed. The Fourier transform of two electrons with Bloch wave functions was obtained in the 
strong bond approximation. This method of calculations shows that exact the matrix element can be 
calculated as well. It was shown that unlike current approaches, it is not necessary to spread out the 
charge of nuclei of ions of the crystal over the whole crystal, i.e., all calculations can be performed 
with real nuclei of ions of the crystal. The method of calculations can be transferred to crystals with 
infinite sizes in x, y planes and having the finite number of unit cells along the z axis. To this end, it is 
necessary to take two-dimensional translation vectors when building Bloch functions. 
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