ISSN 2072-5981



# Volume **19**, Issue **2** Paper No **17209**, 1-9 pages **2017**

http://mrsej.kpfu.ru http://mrsej.ksu.ru



Established and published by Kazan University Sponsored by International Society of Magnetic Resonance (ISMAR) Registered by Russian Federation Committee on Press, August 2, 1996 First Issue was appeared at July 25, 1997

© Kazan Federal University (KFU)\*

"*Magnetic Resonance in Solids. Electronic Journal*" (MRS*ej*) is a peer-reviewed, all electronic journal, publishing articles which meet the highest standards of scientific quality in the field of basic research of a magnetic resonance in solids and related phenomena.

Indexed and abstracted by

Web of Science (ESCI, Clarivate Analytics, from 2015), Scopus (Elsevier, from 2012), RusIndexSC (eLibrary, from 2006), Google Scholar, DOAJ, ROAD, CyberLeninka (from 2006), SCImago Journal & Country Rank, etc.

### **Editors**

Vadim Atsarkin (Institute of Radio Engineering and Electronics, Moscow) Yurij **Bunkov** (CNRS, Grenoble) Mikhail **Eremin** (KFU, Kazan) David Fushman (University of Maryland, College Park) Hugo Keller (University of Zürich, Zürich) Yoshio Kitaoka (Osaka University, Osaka) Boris Malkin (KFU, Kazan) Alexander Shengelaya (Tbilisi State University, Tbilisi) Jörg Sichelschmidt (Max Planck Institute for Chemical Physics of Solids, Dresden) Haruhiko Suzuki (Kanazawa University, Kanazava) Murat **Tagirov** (KFU, Kazan) Dmitrii Tayurskii (KFU, Kazan) Valentine Zhikharev (KNRTU, Kazan)

### *Editors-in-Chief*

Jean **Jeener** (Universite Libre de Bruxelles, Brussels) Boris **Kochelaev** (KFU, Kazan) Raymond **Orbach** (University of California, Riverside)

> *Executive Editor* Yurii **Proshin** (KFU, Kazan) *mrsej@kpfu.ru*

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

**O** This is an open access journal which means that all content is freely available without charge to the user or his/her institution. This is in accordance with the BOAI definition of open access.

<sup>\*</sup> In Kazan University the Electron Paramagnetic Resonance (EPR) was discovered by Zavoisky E.K. in 1944.

## Electron paramagnetic resonance and X-ray diffraction study of $PbF_2$ fine powders mechanochemically doped with $Er^{3+}$ ions

I.A. Irisova<sup>1,\*</sup>, I.N. Gracheva<sup>1</sup>, Y.V. Lysogorskiy<sup>1</sup>, A.A. Shinkarev<sup>2</sup>, A.A. Rodionov<sup>1</sup>, D.A. Tayurskii<sup>1</sup>, R.V. Yusupov<sup>1</sup>

<sup>1</sup>Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia

<sup>2</sup>Kazan National Research Technological University, K. Marx str. 68, 420015 Kazan, Russia

\*E-mail: IAIrisova@kpfu.ru

(Received December 9, 2017; revised December 26, 2017; accepted December 26, 2017; published December 30, 2017)

Investigation of the mechanochemical doping of PbF<sub>2</sub> powders with  $\mathrm{Er}^{3+}$  ions with electron paramagnetic resonance and X-ray diffraction is presented. In the analysis of the results a possibility of the structural transformation between the cubic  $\beta$ -PbF<sub>2</sub> and orthorhombic  $\alpha$ -PbF<sub>2</sub> phases in the course of synthesis was taken into account. It is shown that regardless of the initial state of PbF<sub>2</sub> it reveals high efficiency of the mechanochemical doping with  $\mathrm{Er}^{3+}$  ions. Obtained particles are found in  $(\alpha/\beta)$ -PbF<sub>2</sub> structurally inhomogeneous state with the majority of the  $\mathrm{Er}^{3+}$  ions located in the equilibrium  $\alpha$ -PbF<sub>2</sub> fraction. Preferrable location of the  $\mathrm{Er}^{3+}$  ions in the  $\alpha$ -PbF<sub>2</sub> phase is related to the fact that the formation of the cation vacancies necessary for a mechanically activated diffusion of erbium ions into the particles and nucleation of the  $\alpha$ -PbF<sub>2</sub> phase proceed in parallel and is mediated by dislocations created in the course of synthesis. Annealing of the sample leads to a conversion of its entire volume into the metastable  $\beta$ -PbF<sub>2</sub> phase with all the  $\mathrm{Er}^{3+}$  centers possessing the cubic symmetry.

PACS: 73.20.Hb, 76.30.-v, 76.30.Kg

Keywords: fluorite, rare-earth ions, mechanically activated doping, electron paramagnetic resonance

#### 1. Introduction

Nowadays,  $\beta$ -PbF<sub>2</sub> single-crystalline optical fibers doped with rare-earth (RE) ions compete with the traditional ones produced from doped glasses [1]. Optical properties of the crystalline  $\beta$ -PbF<sub>2</sub> fibers are more attractive than those of the glass fibers. However, the technology of the crystalline fiber production is significantly more complex and expensive. An alternative approach is based on the synthesis of the RE-doped  $\beta$ -PbF<sub>2</sub> glass-ceramics, as it is much simpler while the optical properties are comparable [2, 3].

Mechanical activation or, briefly, "mechanoactivation" can serve as an alternative and effective means for incorporation of the RE ions into the crystal structure as well as one of the steps of the doped ceramics synthesis. Mechanoactivation in general is a complex, multistage process of changing the state of a solid under a delivery of the mechanical energy [4]. Moreover, mechanochemical synthesis has an important advantage with respect to the traditional method of the doped crystal growth by means of directional crystallization, namely, the low (room) temperature, which allows to overcome the restrictions associated with different melting points of the components, vapor pressure, thermal decomposition, and other factors [5]. Therefore, it is important to study processes that occur in the course of the mechanochemical doping of PbF<sub>2</sub> with  $Er^{3+}$  ions.

Our previous studies [6–8] of the mechanochemical doping of  $MF_2$  (M = Ca, Sr, Ba) fine powders with  $Er^{3+}$  ions performed with electron paramagnetic resonance (EPR) spectroscopy

#### EPR and XRD study of the $PbF_2$ powders mechanochemically doped with $Er^{3+}$ ions

have shown that the cubic symmetry  $\text{Er}^{3+}$  ion impurity centers are formed. Investigations of the EPR spectra intensity dependences on the particle size have shown that doping proceeds differently for various MF<sub>2</sub> hosts. In the case of CaF<sub>2</sub>, impurity centers are located in a thin surface layer of the particles. In SrF<sub>2</sub>, the impurity is distributed over the particle volume. In BaF<sub>2</sub>, there is a layer of a finite thickness for which the probability of the mechanochemical doping is small, and RE impurities are located in the cores of the large enough particles. These observations were explained assuming that the result of the mechanosynthesis of the fluorite-structure particles doped with  $\text{Er}^{3+}$  ions is governed by two processes: mechanically-activated diffusion of RE ions into the particles, and segregation of the impurity ions to the grain boundaries. In this case, characteristic depth values for various MF<sub>2</sub> differ considerably from each other. Also, it has been shown that MF<sub>2</sub> powders mechanochemically doped with  $\text{Er}^{3+}$  ions are in a long-lived metastable state characterized by a high concentration of vacancies and dominating cubic symmetry  $\text{Er}^{3+}$  ion centers [9]. Annealing of the samples brings the powders to the ground state with most of the vacancies healed, and trigonal symmetry  $\text{Er}^{3+}$  centers are formed in SrF<sub>2</sub> and BaF<sub>2</sub> due to the local charge compensation by the interstitial fluorine ion.

In [6–9], we studied MF<sub>2</sub> fluorites that exist only in the cubic phase. It was interesting to study the mechanochemical doping with RE ions of a crystalline host with higher complexity. It is known that under normal conditions PbF<sub>2</sub> can exist in the two structural phases [10]: thermodynamically equilibrium orthorhombic  $\alpha$ -PbF<sub>2</sub> (space group Pnma) and metastable cubic  $\beta$ -PbF<sub>2</sub> phase. The latter has the fluorite structure with the space group Fm3m.

It follows from the above that the studies of the mechanosynthesis of the  $PbF_2$  powders doped with rare-earth ions are promising and relevant, due to both the possibility of a simplified doped ceramics synthesis as well as an assessment of the approach applicability to different  $MF_2$  hosts.

#### 2. Sample Preparation and Experiment Techniques

 $PbF_2$  powders mechanochemically doped with  $Er^{3+}$  ions were obtained by grinding of the (97 wt.%  $PbF_2 + 3$  wt.%  $ErF_3$ ) mixtures of high purity crystalline salts in an agate mortar in extra-pure isopropyl alcohol. The choice of isopropyl alcohol as a buffer medium is due to its low chemical activity in the series of alcohols. Grinding of the powders in the isopropanol allowed to avoid their prolonged contact with air and, accordingly, excluded the interactions with oxygen and water vapor, which could significantly complicate the interpretation of the results. To control better the concentration of the RE impurity, before grinding of the mixture the mortar was cleaned with a corundum-based abrasive followed by a two-time self-lining with the PbF<sub>2</sub> compound.

Since PbF<sub>2</sub> can exist at room temperature in two modifications  $(\alpha, \beta)$ -PbF<sub>2</sub> [10], it was necessary to control a sample phase composition, both in the initial mixture and in the prepared fine powders. From the X-ray diffraction (XRD) analysis, the major part of the PbF<sub>2</sub> powder initially was in the orthorhombic  $\alpha$ -PbF<sub>2</sub> phase. Transformation of the orthorhombic to the cubic phase ( $\beta$ -PbF<sub>2</sub>) can be achieved by the annealing at a temperature of 650°C. Subsequent cooling down to the room temperature at atmospheric pressure does not lead to a reverse transition. In this study, the annealing of the  $\alpha$ -PbF<sub>2</sub> powder for 12 hours has led to the transformation of more than 90% of its volume to the  $\beta$ -PbF<sub>2</sub> cubic phase.  $\beta$ -PbF<sub>2</sub> is in fact a metastable state, and, according to [10], under a mechanical stress  $\alpha$ -PbF<sub>2</sub> nucleates in the  $\beta$ -PbF<sub>2</sub> at the structural defects like slip lines and bands. As far as the ErF<sub>3</sub> is concerned, according to the powder-XRD analysis its whole volume was in the orthorhombic phase (space group Pnma [11]). Series of the fine powder samples with different mean particle size  $\langle d \rangle$  were prepared from the (97 wt.% PbF<sub>2</sub> + 3 wt.% ErF<sub>3</sub>) mixture with the predominant  $\beta$ -PbF<sub>2</sub> phase by grinding for 12 h in an agate mortar. Separation of the fractions with different particle sizes was performed by means of the successive sedimentation in isopropanol. Prior to sedimentation the powders were dispersed in a small amount of the solvent with ultrasound. Studied series that differed only in the grain size consisted of fine powders obtained after 48, 17, 6 and 2 hour sedimentation.

Samples were characterized with the Philips XL30 scanning electron microscopy (SEM). In order to determine the mean particle sizes  $\langle d \rangle$ , the distributions of grain sizes were fit to the log-normal distribution function [8]. The results of this analysis are presented in Table 1.

EPR spectra of the samples were measured with the continuous wave X-band ( $\sim 9.5 \text{ GHz}$ ) Bruker ESP300 spectrometer. Experiments were performed at a temperature of 15 K. The temperature was controlled using an Oxford Instruments ESR-9 liquid helium flow cryostat.

Powder X-ray diffraction patterns were obtained with the Bruker D8 Advance diffractometer using the Cu-K<sub> $\alpha$ </sub> radiation ( $\lambda = 1.5418$ Å) in the Bragg-Brentano geometry.

#### 3. Results and Discussion

In Fig. 1 EPR spectra are shown of the two PbF<sub>2</sub>:Er<sup>3+</sup> samples obtained by means of mechanosynthesis from lead fluoride with the dominating  $\alpha$ -PbF<sub>2</sub> (volume fraction 94%) and  $\beta$ -PbF<sub>2</sub> (90%) phases (see Table 1). Both spectra in Fig. 1 contain a component at the *g*-factor of 6.78, characteristic for the cubic symmetry Er<sup>3+</sup> impurity ion centers [2]. This is additionally approved by the observation for a sample produced from the  $\beta$ -PbF<sub>2</sub> of the hyperfine structure due to the <sup>167</sup>Er-isotope (nuclear spin I = 7/2, natural abundance 22.9%). However, for the sample synthesized from the  $\beta$ -PbF<sub>2</sub> the intensity of the line at  $g \sim 6.78$  is almost an order of magnitude higher than for the sample produced from the  $\alpha$ -PbF<sub>2</sub>. In the EPR spectra of both samples, a new spectral component at  $g \sim 12.7$  appears which has an asymmetric shape characteristic for the powder spectra of anisotropic centers. The intensity of the new component, which was not observed in the MF<sub>2</sub> before is similar for the samples produced from the  $\alpha$ - and  $\beta$ -PbF<sub>2</sub>.

Since high-purity chemical components were used for the preparation of the samples, and no signals were observed in the EPR spectrum of the mixture before grinding neither at g = 6.78 nor at g = 12.7, it may indicate that both signals originate from the impurity  $\text{Er}^{3+}$  centers. One may expect that in the course of grinding phase transformation between the  $\alpha$ - and  $\beta$ -PbF<sub>2</sub> phases occurred with the transition from the metastable  $\beta$ - into the equilibrium  $\alpha$ -phase more probable. Obviously, impurity  $\text{Er}^{3+}$  ion in the orthorhombic  $\alpha$ -PbF<sub>2</sub> phase cannot have symmetry higher than the symmetry of the nearest surrounding, and therefore, should possess anisotropic g-tensor.

| Fraction                  | Size $(\mu m)$ | $\beta$ -PbF <sub>2</sub> (%) | $\alpha$ -PbF <sub>2</sub> (%) |
|---------------------------|----------------|-------------------------------|--------------------------------|
| Initial PbF <sub>2</sub>  | $\sim 100$     | $6\pm 2$                      | $94 \pm 2$                     |
| Annealed PbF <sub>2</sub> | $\sim 100$     | $90 \pm 2$                    | $10 \pm 2$                     |
| 48 h sedimentation        | $0.15\pm0.01$  | $15\pm2$                      | $85 \pm 2$                     |
| 17 h sedimentation        | $0.23\pm0.02$  | $20\pm2$                      | $80 \pm 2$                     |
| 6 h sedimentation         | $0.66\pm0.09$  | $31\pm2$                      | $69 \pm 2$                     |
| 2 h sedimentation         | $1.49\pm0.12$  | $36 \pm 2$                    | $64 \pm 2$                     |

Table 1. Mean particle size and phase composition for a series of  $PbF_2$  fine powder samples mechanochemically doped with  $Er^{3+}$  ions.



Figure 1. EPR spectra of PbF<sub>2</sub> fine powders mechanochemically doped with  $\mathrm{Er}^{3+}$  ions and produced by 3-hour long mechanosynthesis from (97 wt.% PbF<sub>2</sub> + 3 wt.% ErF<sub>3</sub>) mixtures with dominating  $\alpha$ -PbF<sub>2</sub> (red line) and  $\beta$ -PbF<sub>2</sub> (black line) phases;  $\nu = 9.4864$  GHz, T = 15 K.



**Figure 2.** EPR spectra of PbF<sub>2</sub> fine powder mechanochemically doped with  $\text{Er}^{3+}$  ions (initial  $\alpha$ -PbF<sub>2</sub>) before (a) and after (b) the annealing for 12 hours at 650°C;  $\nu = 9.4892$  GHz, T = 15 K.

To check whether the above assumptions are true, the PbF<sub>2</sub>:Er<sup>3+</sup> sample produced from the  $\alpha$ -PbF<sub>2</sub> was annealed for 12 hours at 650°C. This annealing is a typical procedure used to transform PbF<sub>2</sub> from the  $\alpha$ - to the  $\beta$ -phase. The results of the annealing are shown in Fig. 2. Clearly, EPR spectrum of the sample has changed drastically: while the asymmetric component at  $g \sim 12.7$  has vanished, the spectrum of the cubic Er<sup>3+</sup> center has increased in intensity more than 20 times, and hyperfine structure due to <sup>167</sup>Er-isotope has become obvious.

Thus, impurity  $Er^{3+}$  centers that resided in the orthorhombic phase due to the annealing and structural transition have acquired the cubic symmetry. Consequently, the intensity of the  $Er^{3+}$  cubic center spectrum increased at the expense of the anisotropic component. The intensity increase of the cubic  $Er^{3+}$ -center spectrum may seem too large. However, as the measured signal is in fact a derivative of the absorption spectrum, its amplitude for the powder samples in the case of a substantial g-factor anisotropy is significant mainly at the edges of the absorption pattern characteristic for powders. As an appropriate measure for the amount of paramagnetic centers is the integral intensity of the absorption spectrum, there is no inconsistency in our observations.

The shape of the observed anisotropic  $Er^{3+}$ -center powder spectrum allows us to conclude that, first, the largest of its g-tensor components corresponding to the low-field edge of the absorption spectrum, is ~ 12.7. This value is quite ordinary for anisotropic  $\text{Er}^{3+}$  impurity centers; similar values of the *g*-factor were found for  $\text{Er}^{3+}$  ions in, e.g., CaO, Y<sub>2</sub>O<sub>3</sub>, YCl<sub>3</sub>·6H<sub>2</sub>O, LaF<sub>3</sub> [12], SrY<sub>2</sub>O<sub>4</sub> [13]. Second, low-symmetry  $\text{Er}^{3+}$  centers dominate in the sample produced from the orthorhombic  $\alpha$ -PbF<sub>2</sub>: less than 5% of the impurity  $\text{Er}^{3+}$  centers possess the cubic symmetry.

To learn more about the structural transformations in PbF<sub>2</sub> powders that occur in the course of the mechanosynthesis we studied it with X-ray diffraction. Sample series was prepared from  $\beta$ -PbF<sub>2</sub> by means of successive sedimentation from the (97 wt.% PbF<sub>2</sub> + 3 wt.% ErF<sub>3</sub>) mixture ground for 12 hours. In Fig. 3 powder-XRD patterns of the series are presented. Clearly, two principal components dominate, from  $\alpha$ - and  $\beta$ -PbF<sub>2</sub>. Phase compositions obtained from the data analysis, are indicated in Figs. 3 and 4 and in Table 1.

In the initial mixture, about 90% of the PbF<sub>2</sub>-powder volume was in the cubic  $\beta$ -phase. After grinding, the volume fraction of the cubic phase has decreased significantly. Thus, grinding



Figure 3. X-ray diffraction patterns of PbF<sub>2</sub>:Er<sup>3+</sup> powder samples produced by mechanosynthesis from (97 wt.% PbF<sub>2</sub> + 3 wt.% ErF<sub>3</sub>) mixture with dominating  $\beta$ -PbF<sub>2</sub> phase. Mean particle size (from top to bottom): 1.49  $\mu$ m, 0.66  $\mu$ m, 0.23  $\mu$ m and 0.15  $\mu$ m.



Figure 4. Dependence of the  $\alpha$ - and  $\beta$ -phase content in the PbF<sub>2</sub> fine powders mechanochemically doped with  $\text{Er}^{3+}$  ions on grain size and its linear fit.

of PbF<sub>2</sub> in a mortar indeed leads to the transition of a part of the volume from the metastable cubic to the equilibrium orthorhombic phase. In our case, grinding for 12 hours has led to the transformation of most of the PbF<sub>2</sub> volume into a rhombic  $\alpha$ -phase. Moreover, the content of the latter systematically increases with a decrease of the grain size reaching 85% for the finest fraction (Fig. 4).

Formation of the  $\alpha$ -phase during the mechanochemical doping of  $\beta$ -PbF<sub>2</sub>, in our opinion, proceeds in the following way. According to [10], on stress application the  $\alpha$ -PbF<sub>2</sub> phase nucleates in the  $\beta$ -PbF<sub>2</sub> matrix at structural defects - slip lines and bands - created when deformation exceeds the elastic limit. Then the volume fraction of the  $\alpha$ -PbF<sub>2</sub> increases under stress application/variation due to the growth of the  $\alpha$ -phase droplets in the  $\beta$ -phase host. Therefore, an amount of the orthorhombic  $\alpha$ -PbF<sub>2</sub> phase in the samples increases with the duration of the mechanosynthesis. Then one can expect that in the smaller particles the volume of the initially dominating cubic phase will be less that in the larger ones. This indeed is observed in our data. After 12-hour grinding in all the fractions of the sample most of the volume (64–85%) is in the  $\alpha$ -PbF<sub>2</sub> phase.

In this situation, it is not surprising to observe in the EPR spectra of the  $\beta$ -PbF<sub>2</sub>-based ground mixture the signal of the low-symmetry Er<sup>3+</sup> ion centers. This signal originates from the impurity Er<sup>3+</sup> ions in the  $\alpha$ -PbF<sub>2</sub> phase. High intensity of the cubic Er<sup>3+</sup>-center component in the EPR spectrum of the sample produced from the initial  $\beta$ -PbF<sub>2</sub> phase in Fig. 1, in our opinion, is due to the shorter duration of grinding (3 hours) compared with the series described above.

Knowledge of the anisotropic spectrum origin and the analysis of the spectra shown in Figs. 1 and 2 bring us to the following conclusions. First, we note that while the intensities of the anisotropic peaks at  $g \sim 12.7$  for the samples obtained from  $\alpha$ - and  $\beta$ -PbF<sub>2</sub> are practically identical (Fig. 1), the intensity of the cubic  $\text{Er}^{3+}$ -center spectrum for the sample obtained from the  $\beta$ -PbF<sub>2</sub> is approximately an order of magnitude greater. Therefore, it becomes clear that mechanically activated doping of the cubic  $\beta$ -PbF<sub>2</sub> phase is notably more efficient than of the rhombic  $\alpha$ -PbF<sub>2</sub>. Second, comparing the intensities of the  $\text{Er}^{3+}$  cubic center in the sample obtained from the  $\alpha$ -PbF<sub>2</sub> before and after the annealing (Fig. 2), and the intensities of the anisotropic spectrum in the samples produced from the  $\alpha$ - and  $\beta$ -phases (Fig. 1), one can conclude that in the sample prepared from  $\beta$ -PbF<sub>2</sub> the number of  $\text{Er}^{3+}$  anisotropic centers is greater than that of the cubic ones.



**Figure 5.** EPR spectra of the mechanosynthesized PbF<sub>2</sub>:Er<sup>3+</sup> fine powder samples with different grain sizes (a); spectra intensities are normalized to the sample mass,  $\nu = 9.484$  GHz, T = 15 K. Dependences on the particle size of the Er<sup>3+</sup> impurity concentration in the  $\alpha$ - and  $\beta$ -phases of PbF<sub>2</sub> and their linear fits (b).

Fig. 5(a) shows the EPR spectra of the PbF<sub>2</sub>:Er<sup>3+</sup> grain size series. At first sight, there is no significant difference in the intensities of the principal spectral components. However, since both  $\alpha$ - and  $\beta$ -phases are present in the samples, correct interpretation of the results demands the intensity of each component to be normalized to the volume fraction of the respective phase. The results are shown in Fig. 5(b). Here, the peak-to-peak intensity of the cubic Er<sup>3+</sup> center spectrum served as a measure of its concentration, and the peak amplitude at  $g \sim 12.7$  was used for Er<sup>3+</sup> ions in the  $\alpha$ -PbF<sub>2</sub> phase. The latter is correct within an assumption that the shape of the absorption spectrum of the Er<sup>3+</sup> ions in the  $\alpha$ -PbF<sub>2</sub> does not change from sample to sample.

The used approach obviously provides with an information on the relative changes in concentrations of two types of the  $\text{Er}^{3+}$  centers but not on the absolute amount of centers. It can be seen from Fig. 5(b) that the concentration of  $\text{Er}^{3+}$  ions in  $\alpha$ -PbF<sub>2</sub> does not depend on the particle size. It means that the rhombic phase is evenly doped with  $\text{Er}^{3+}$  ions. Concentration of the  $\text{Er}^{3+}$  ions in the  $\beta$ -phase of PbF<sub>2</sub> increases with the decrease of the particle size. On plastic deformation of  $\beta$ -PbF<sub>2</sub> the  $\alpha$ -phase is found both in the near-surface layer and in the volume of  $\beta$ -PbF<sub>2</sub> particles [10]. Rhombic  $\alpha$ -PbF<sub>2</sub> nucleates at structural defects like slip lines and bands. Formation of these defects is associated with the creation of dislocations. Motion and annihilation of dislocations in turn generates cationic vacancies that serve as a necessary step in mechanoactivated diffusion of RE-ions into cubic fluorites CaF<sub>2</sub> and SrF<sub>2</sub>. Thus, the source of the defects at which  $\alpha$ -phase nucleates in  $\beta$ -PbF<sub>2</sub> and of those promoting RE-ions into fluorites is the same. Therefore, it is not a big surprise that on grinding of ( $\beta$ -PbF<sub>2</sub> + ErF<sub>3</sub>) mixture impurity Er<sup>3+</sup>-ions are located mainly in the rapidly growing  $\alpha$ -phase. Concentration of the Er<sup>3+</sup> ions in  $\alpha$ -PbF<sub>2</sub> does not change with the particle size of the powder, since, probably, the growth of  $\alpha$ -PbF<sub>2</sub> occurs homogeneously throughout the sample.

Increase in the impurity  $\text{Er}^{3+}$  ion concentration in the cubic phase of PbF<sub>2</sub> with the decrease of the particle size can be explained in the following simple way. Since the volume fraction of the cubic phase is reduced in the particles of a smaller size, it is likely that the droplets of the residual cubic phase in these particles are smaller than in the larger ones. Then, assuming that a diffusion depth of the  $\text{Er}^{3+}$  ions from the saturated rhombic phase to the cubic one is small compared to the size of the cubic phase inclusions, it would be an expected situation that the concentration of the erbium ions in the cubic phase of large particles is smaller than in the small ones. Then, mechanochemical doping of the  $\beta$ -PbF<sub>2</sub> phase results in formation of a structurally



Figure 6. Schematic models of the inhomogeneous structure of larger (left) and smaller (right)  $PbF_2$  fine particles mechanochemically doped with  $Er^{3+}$  ions.

phase-separated, inhomogeneously doped with  $Er^{3+}$  impurity powders schematically shown in Fig. 6 for larger and smaller particles.

#### 4. Summary

Thus, a complementary study of mechanochemical doping of PbF<sub>2</sub> powders with  $\text{Er}^{3+}$  ions with electron paramagnetic resonance and X-ray diffraction has been performed. It has been shown that whatever is the initial crystal structure of PbF<sub>2</sub> ( $\alpha/\beta$ -phase) the doping proceeds efficiently. Grains of PbF<sub>2</sub>:Er<sup>3+</sup> fine powders obtained by mechanosynthesis are in the structurally-mixed state with most of the volume in the orthorhombic  $\alpha$ -phase. Mechanoactivated diffusion and transformation to the  $\alpha$ -PbF<sub>2</sub> proceed in parallel and is mediated by dislocations created in the course of the synthesis. Full volume of the powders can be brought to the cubic  $\beta$ -PbF<sub>2</sub> phase by the appropriate annealing.

#### Acknowledgments

The reported study was funded by RFBR according to the research project No.16-32-00152 mol\_a (I.A.I., I.N.G. and Y.V.L.) and by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, Nos. 3.8138.2017/8.9 (D.A.T.) and 3.7704.2017/4.6 (R.V.Y.).

#### References

- Tunnermann A., Schreiber T., Roser F., Liem A., Hofer S., Zellmer H., Nolte S., Limpert J., J. Phys. B 38, S681 (2005).
- 2. Dantelle G., Mortier M., Vivien D., Phys. Chem. Chem. Phys. 9, 5591 (2007).
- 3. Dantelle G., Mortier M., Goldner P., Vivien D., J. Phys.: Condens. Matter 18, 7905 (2006).
- 4. Prokopets V. S., Bedrin E. A., Mechanoactivated Technology of Obtaining Mineral Bonding Agents Based on Acidic Ashes from Heat Electropower Stations (SibADI, 2003).
- Scholz G., Dorfel I., Heidemann D., Feist M., Stosser R., J. Solid State Chem. 179, 1119 (2006).
- Irisova I. A., Rodionov A. A., Tayurskii D. A., Yusupov R. V., J. Phys.: Conf. Ser. 324, 012026 (2011).
- Irisova I. A., Rodionov A. A., Tayurskii D. A., Yusupov R. V., Magn. Reson. Solids 15, 13203 (2013).
- Irisova I. A., Rodionov A. A., Tayurskii D. A., Yusupov R. V., Opt. Spectrosc. 116, 783 (2014).

- Irisova I., Kiiamov A., Korableva S., Rodionov A., Tayurskii D., Yusupov R., Appl. Magn. Reson. 46, 515 (2015).
- 10. Borisenko E. B., Klassen N. V., Savchenko I. B., Phys. Solid State 39, 559 (1997).
- 11. Sobolev B. P., The Rare Earth Trifluorides. Part II. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Barcelona, Institut d'Estudis Catalans, 2001).
- 12. Altshuler S. A., Kozyrev B. M., Electron Paramagmetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974).
- Malkin B. Z., Nikitin S. I., Mumdzhi I. E., Zverev D. G., Yusupov R. V., Gilmutdinov I. F., Batulin R., Gabbasov B. F., Kiiamov A. G., Adroja D. T., Young O., Petrenko O. A., *Phys. Rev. B* 92, 094415 (2015).