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The expressions for calculating the matrix elements of the Coulomb interaction between an electron and 
a low-symmetry infinite crystal lattice have been obtained. One-center matrix elements are considered. 
The Gaussian type of orbitals (GTO) is used in calculations. All expressions are absolutely and rapidly 
converging series in the space of reciprocal lattice vectors. 

PACS: 61.50.Ah, 61.72.S 
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1. Introduction.

Currently, the value of the long-range Coulomb interaction (LRCI), i.e. Coulomb interaction between
an electron and an infinite crystal lattice in the case of low symmetry is estimated using the Madelung 
constant, in other words, by calculating the electrostatic potential at the lattice site, i.e., a point [1-4]. 
The expressions for calculating the LRCI matrix elements in the case of orthorhombic lattices are given 
in [5]. Using the results [5], the expressions were obtained in [6] for calculating the LRCI matrix 
elements on p and d-orbitals and the crystal NaV2O5 was considered. For this crystal, in particular, the 
Madelung energies and diagonal matrix elements on p and d orbitals were calculated. If for vanadium 
ions the values of these quantities coincide well enough, they differ markedly for oxygen ions. For 
example, the following estimates were obtained for one of the oxygen ions: 1.18856ME   a.u., 

( ) 0.96122zE p   a.u. The difference between these quantities is on the order of 6 eV. The energy of

,x yp p  orbitals is ( ) 1.02686xE p   a.u., ( ) 1.18351yE p   a.u, respectively. Thus, the splitting of the 

diagonal matrix elements is on the order of 2-6 eV. 

The LRCI matrix elements enter, for example, the expressions for the ab initio calculations of the 
amplitudes of electron transfer between ions [7]. It can be seen that the LRCI estimates for the transition 
amplitudes in a given crystal by the methods [1-4] can lead to the incorrect interpretation of the 
experimental data. In [8], the expressions were obtained for calculating the LRCI matrix elements on 
f-orbitals. The expressions obtained were used in estimating the crystal field parameters for the impurity
centers considered in [8]. The improvement in agreement with experiment was obtained in comparison
with standard methods. In this paper we obtain expressions for the calculation of such matrix elements
in the case of low symmetry.

2. General part

Let the radial part  n lR r  of the ionic orbital  n lm r  on which the electron is located, have the 

Gaussian type of orbitals (GTO) form 

  2

.i rl
nl i

i

R r a r e   (1)

Let the vectors 1 2 3, ,a a a  are the vectors of the cell of the triclinic lattice. We denote by 

1 1 2 2 3 3l l l l  R a a a  the vector determining the position of the unit cell, а jr  and pr  are vectors of ions 

in the unit cell. We consider the isolated ion determined by the vectors 0 0, 0.j R r R  The charge pq

is in the site l pR r . Then the matrix element of the Coulomb interaction of an electron with a charge 
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pq  defined on the wave functions of the isolated ion has the form (in a.u.) [5, 8] 

             
1 1

* * .j p l p j p l p jq dV q dV      
 

           r r r R r r r r r R r r r  (2) 

Let us denote l p j  R R r r . We define the functions  , 1 2 3
l
p jF n n n  as 

   31 2
1 2

, 1 2 3
,

2 exp .nn nl
p j p i k i k

i k

F n n n q a b x y z dxdydz           r R r  (3) 

The matrix elements (2) on the orbitals of the isolated ion can be expressed in terms of the  , 1 2 3
l
p jF n n n  func-

tions. For example, the matrix element for the      1/2 23 / 4 expp z i ia z r   r  orbital has the form

      1* 3
002 .

2p z p p zq dV F    r r R r

We write the unit vectors of the triclinic lattice with respect to the Cartesian coordinate system in the form 

1 1 2 2 3 3, , ,a b c  a e a e a e (4)

1 2 3, cos sin , sin cos sin sin cos .           e i e i j e i j k  (5)

Then for the lR , pr , jr  vectors we obtain the expressions 

   
1 1 2 2 3 3

1 2 3 2 3 3cos sin cos sin sin sin cos ,
l l l l

l a l b l c l b l c l c      
   

     

R a a a

i j k
(6)

   
1 2 3

cos sin cos sin sin sin cos ,

p p p p

p p p p p p

x y z

x a y b z c y b z c z c      

   

     

r a a a

i j k
(7)

   
1 2 3

cos sin cos sin sin sin cos .

j j j j

j j j j j j

x y z

x a y b z c y b z c z c      

   

     

r a a a

i j k
(8)

The components of the  l p j
    r R r r  vector in the Cartesian coordinate system according to

(6)-(8) are written as 

     1 2 3 1cos sin cos ,p j p j p jx l x x a l y y b l z z c x A                (9)

   2 3 2sin sin sin ,p j p jy l y y b l z z c y A            (10)

 3 3cos .p jz l z z c z A     (11)

Further we present the function  , 1 2 3
l
p jF n n n  in the form convenient for calculations. To do this, we 

use the transformation 

 2 2

0

1 2
exp .dv v





      r R
r R

(12)

After the transformation (12) and integration with respect to x, y, z in (3), we obtain 

 
 

 
   

  2223

, 1 2 3 3/22 2
, 1 00

23
2

2
1

!
4 ! 2 !

exp ,

s s
s

s s
s

s

n m
n

sl
p j p i k s n mm

i k s m
ik s s s ik

ik
w

w ik

A vdv
F n n n q a b n

v m n m v

v
A

v

 








 



     
    

        

  


 (13) 

where ,ik i k      / 2sn  is the integer part of the number in brackets / 2.sn  
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Using the transformation 

 
2

2
3/22 2

,
1

ik

ikik

u dv du
v

u v




 
 

(14)

we obtain 

 
   
   

 
22 21 23 3

2 2
, 1 2 3

, 0 110

1
! exp .

4 ! 2 !

s s s
s

s

s

m n m
n

sl i k
p j p s ik wm

i k m wsik ik s s s

u A ua b
F n n n q du n u A

m n m


 



 

           
     

    (15) 

Let us 2 .s s sk n m   After multiplying the three braces in (15), we select the products 

 31 2 2 2 2 2
1 2 3 1 2 3expkk k

ikA A A u A A A     , (16)

which are present in each term of the resulting sum. We introduce the  x, y,zr  vector setting 

     , , .p j p j p jx x a x y y b y z z c z       Then iA  are written as 

     1 1 2 3cos sin cosA l a x l b y l c z        , (17)

     2 2 3 3 3sin sin sin , cos .A l b y l c z A l c z         (18)

Since the positions of the ions in the unit cell are arbitrary, we assume that the  x, y,zr  vector is 

defined at all points of the unit cell. We introduce the function  1 2 3, , ,D k k kr  defined in the unit cell 

   31 2

1 2 3

2 2 2 2
1 2 3 1 2 3 1 2 3

, ,

, , , expkk k
ik

l l l

D k k k A A A u A A A     r . (19)

The function  1 2 3, , ,D k k kr  is a periodic function of r , in the space with elementary translations 

, ,a b c  of the orthorhombic system. The same as in [5], integration over the unit cell can be transformed 

into integration over the whole space when finding the Fourier transform of the function  1 2 3, , , .D k k kr  

Then we have 

     1 2 3 1 2 3, , , , , , expD k k k D k k k i   
g

r g gr  , (20)

    31 2 2 2 2 2
1 2 3 1 2 3 1 2 3

1
, , , exp ,kk k

ik x y z
c V

D k k k x x x x x x u i g x g y g z dxdydz
v

         g  (21) 

1 2 3cos sin cos , sin sin sin , cos ,x x y z x y z x z             (22)

22 2
, , ,yx z

x y z

nn n
g g g

a b c

 
    (23)

where cv abc  is the volume of the unit cell of the orthorhombic system, g is the reciprocal lattice 

vector, , ,x y zn n n  are integer numbers, i is the imaginary unit. We introduce new integration variables 

1 2 3, , .x x x  Then (21) will be written as 

    31 2 2 2 2 2
1 2 3 1 2 3 1 2 3 1 1 2 2 3 3 1 2 3

1
, , , exp ,kk k

ik
c V

D k k k x x x x x x u i g x g x g x dx dx dx
v

         g     (24) 

where sin coscv abc    is the volume of the unit cell of the triclinic symmetry crystal under 

consideration, and 

 
1 2 3

cos sin sin sin sin sin
, , .

sin sin cos
x y x y z

x

g g g g g
g g g g

      
  

    
      (25) 
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Performing the integration in (24), we obtain  

    
   

  2/23/2 2 3

1 2 3 3 3/2 2 2
1 0

!
, , , exp .

4 2 ! 2 !

s ss

s ss

s

k hk
ss

k hk
s hc ik ik s s s ik

igg k
D k k k

v u u h k h u


  




 

        
    

 g


 (26) 

We introduce the function  1 2 3 ,F n n n r  using the expressions (15), (20), (26). 

 

   
 

 

 

23/2 1 /23

1 2 3 5/2 3
, 1 00

2
2 2 2 22

2
0

1
!

4 !

exp ,
! 2 2 ! 4 4

s
s

s

s

s s
s

s s s

s

m
n

p i k
s m

i k s mc ik ik s

n m
hn m h

s

h s s s s ik ik

uq a b du
F n n n n

v u m

Z u g
i

h n m h u


 

 

 

 
    



   



             



  



r

gr



 

 (27) 

where / 2 .s s ikZ ig     

We substitute      , ,p j p j p jx x x a y y y b z z z c       into the expression obtained (27) and 

perform the summation over the  , ,p p p px a y b z cr  vectors of the unit cell. These transformations are 

cumbersome, but fairly simple and analogous to the transformations in [5, 6] for the orthorhombic 
lattice. As a result, we obtain  

 

   

       

13/2

1 2 3 1 2 3 1 2 3 5/2 3
, 0

2

1 1 2 2 3 3 2

! ! !

, , , exp exp ,
4

i k
j p j

p i kc ik

p p j
pik

a b du
F n n n F n n n n n n

v u

g
f n g f n g f n g q i

u






   

            

  

 

r r

g r

 

    
g

r

 (28) 

where         ,p j x p j y p j z p jg x x a g y y b g z z c      g r r   

  
 
 

 

   
 

2
2/2 /22 2 222

0 0 0

1 1
, .

! 2 2 ! 4 ! 2 ! 44 !

s s
s s

s s s s

s

s s

n m
m h tn nn m h n t

s s
s s m

m h ts s s s ik ikik s

u Z Zu
f n g

h n m h t n tm  

 
     

  

    
         
    (29) 

For example  0, 1,sf g    1, ,s sf g Z    21 1
2, ,

2! 4s s
ik

f g Z


     31 1
3, ,

3! 4s s s
ik

f g Z Z


   

  4 2
2

1 1 1
4, .

4! 8 32s s s
ik ik

f g Z Z
 

    

It can be seen that the functions  ,s sf n g  do not depend on the integration variable u. We call the 

sum over p in parentheses in (28) as the structure factor  jG g  and present it in the form  

            1 2 expj j j p p j
p

G G iG q i     g g g g r r  ,              1
1 2cos sin ,j j jG F F g gr g gr g   (30) 

            2
2 1cos sinj j jG F F g gr g gr g  ,          1 2cos , sin .p p p p

p p

F q F q  g gr g gr   (31) 

Substituting (30), (31) into (28), and integrating over u, we obtain the final expression for the  
function  1 2 3 :jF n n n  

          3/2 2

1 2 3 1 2 3 1 1 2 2 3 33/2 2
,

2
! ! ! , , , exp .

4
ji k

j
i kc ik ik

Ga b g
F n n n n n n f n g f n g f n g

v g


 

 
   

 
 

g

g  


 (32) 
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It can be seen that the structural factor  jG g  is the invariant of deformations, under which the 

difference of the relative coordinates is constant. 

We denote the LRCI Hamiltonian as .LRH  Then the matrix element LRH  on orbitals 

   ,j j    r r r r  is written as 

          1
* *

,

.j LR j j p l p j
l p

H dV q dV      


 

 
        

 
  /r r r r r r r R r r r  (33) 

The stroke denotes that in the case    the term corresponding to the interaction of the charge jq  

with the electron on the orbital  j r r  is absent in the sum.  

As an example, we give the expression for the diagonal matrix element of the Hamiltonian LRH  in 

the case of the      1/2 23 / 4 expp x i ia x r   r  orbital [6]: 

 

   

 

1/2
*

5/2
,

1/22 2
1

2

3

2

1
1 exp .

2 4 3

i k
p x j LR p x j

i k ik

j ik
j

c ik ik

a a
H dV

Gg g
q

v g

 


 
  

  

               
      





r r r r

g 
g

 (34) 

The diagonal matrix elements on the   ,p y r   p z r  orbitals can be obtained from (34) by replacing 

1g  by 2 3, ,g g   respectively. 

3. Double-oblique crystal 

As the first step, we perform test calculations on s-orbitals. According to [5], the energy of the s-orbital 

 jE s  determined by (32) can be written as  

     1/21/2 2

3/2 2
,

4
exp 2 .

4 4
ji k ik

j j
i k ik c ik

Ga a g
E s q

v g

  
  

           
    

 
g 

g

 (35) 

We denote the expression in square brackets in formula (35) as    1
jE s  and put 2 .ik   

       1/22
1

2

4 2
exp 2 .

8
j

j j
c

G g
E s q

v g

 
 

         
  


g 

g

 (36) 

The expression (36) is the energy of the one-exponential s-orbital with exponent ,  

   1/41/2 2 3
1 (1/ 4 ) exp , 2 8 / .s a r a        

We assume the angle 0   and   is an arbitrary angle. We determine the ion charge and the basis 

vectors of the unit cell of the crystal in relative units as    1 1 2 21, 0, 0, 0 , 1, / 2, / 2, / 2 .q q a b c  r r  

The energy    1
jE s  for such lattice is written as 

       1/22
1 1

1 2
0 1

1 1sin 2
exp 2 ,

2 sin

x y zn n n

j

d
E s q

abc d

 
   

 



           
  


n

 (37) 

where 
22 2

2
1 2 2 2

2
cos sin .y x yx z

n n nn n
d

a b ab c
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For a = b and 120   we obtain the expression 

       1/22
1 2

1 2
0 2

1 1 23 2
exp 2 ,

2 3

x y zn n n

j

d
E s q

c d a

 
  

 



           
  


n

 (38) 

where 
2 2

2 2
2 2

3
.

4
z

x y x y

a n
d n n n n

c
     

Let 7.838587a b c    be constant lattices. Then according to (38) we obtain 

    12 : jE s   = 0.291432860377413, 

    18 : jE s   = 0.291432860377413. 

It can be seen that the energy    1
jE s  for the exponent 2   is the same (with the given accuracy).  

The explanation of this fact is obvious. According to Gauss's theorem, if the spherically symmetric 
charge distribution does not overlap with a point charge, then this charge distribution can be regarded 
as a point charge.  

Let 7.838587a b c    be lattice constants, and 120  , 60   and 60   the angles of the 

unit cell. The expressions (25) for the g  vector are 

  1 2 3

1
, 2 , 3 3 2 .

3
x x y x y zg g g g g g g g g          (39) 

Substituting these lattice constants and the expressions (39) into (36), we obtain 

    
1/22

1 3
1

0 3

4 3 1 ( 1) 2
exp 2 ,

6

x y zn n n

j

d
E s q

a d a

 
  

 



          
  


n

 (40) 

where    2 2
3 13 22 12 3 3 .x y x y z z x yd n n n n n n n n       

 4 :      1
jE s  = 0.68670778474898, 

 20:      1
jE s  = 0.68670778474898. 

It is seen that the energy    1
jE s  is the same (with the given accuracy) for the values 4.   

4. BaTiO3 crystal 

We consider the application of the obtained expression (36) to the hexagonal BaTiO3 structure. 
According to [9], the lattice constants are 5.7238a b  Å, 13.9649c  Å. The basis vectors of the unit 
cell ions in relative units have the form 

 Ba1: (0, 0, 0.25),  Ba2: (1/3, 2/3, 0.09671),  Ba3: (1/3, 2/3, 0.40329), 

 Ba4: (2/3, 1/3, 0.59671),  Ba5: (0, 0, 0.75),  Ba6: (2/3, 1/3, 0.90329),  

 Ti1: (0, 0, 0),  Ti2: (2/3, 1/3, 0.15367),  Ti3: (2/3, 1/3, 0.34633),  

 Ti4: (0, 0, 0.5),  Ti5: (1/3, 2/3, 0.65367),  Ti6: (1/3, 2/3, 0.84633),  

 O1: (0.3302, 0.1651, 0.0802),  O2: (0.8349, 0.1651, 0.0802),  O3: (0.8349, 0.6698, 0.0802),  

 O4: (0.51849, 0.03699, 0.25),  O5: (0.96301, 0.48151, 0.25),  O6: (0.51849, 0.48151, 0.25),  

 O7: (0.3302, 0.1651, 0.4198),  O8: (0.84903, 0.1651, 0.4198),  O9: (0.8349, 0.6698, 0.4198),  

 O10: (0.1651, 0.3302, 0.5802),  O11: (0.6698, 0.83490, 0.58020),  O12: (0.1651, 0.8349, 0.5802),  

 O13: (0.03699, 0.51849, 0.75),  O14: (0.48151, 0.51849, 0.75),  O15: (0.48151, 0.96301, 0.75),  

 O16: (0.1651, 0.3302, 0.9198),  O17: (0.6698, 0.8349, 0.9198),  O18: (0.1651, 0.8349, 0.91980). 
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For BaTiO3  2 0,F g  and  1F g  has the form 

 

          
          

       

1 = 4 1 1 4 1 cos / 3 / 3 / 2 cos 0.19266

4 1 cos / 2 2 1 cos / 3 / 3 / 2 cos 0.30658

4 1 cos 0.03698 0.5 2cos 0.4815 0.5

cos 0.

z x y z

z x y z

x y z

n n n n

x y z z

n n n n

z x y z z

n n n

x y z x y z

F n n n n

n n n n n

n n n n n n

 

  

 

 

 

 

          

          

            



g

      
      

44452 2cos 0.3396 cos 0.6698 0.5

2cos 0.5047 cos 0.1651 0.5 .

x y z x y z

x y x y z

n n n n n n

n n n n n

  

 

          

        

 (41) 

According to (36) and (38), we have for BaTiO3 

         1/22
11 2

2
0 2

cos 23 2
exp 2 .

2 3
j

j j

F d
E s q

c d a

 
  

         
  


n

gr g
 (42) 

The ions in BaTiO3 have two non-equivalent positions. We present further the values of energies 
   1
jE s  (in a.u.) for ions in BaTiO3 ( 4):   

Ti4+(1):  cos 1,j gr      1 1 .4582510001,jE s   (43) 

Ti4+(2):   2
cos cos 2 0.15367 ,

3 3
yx

j z

nn
n

  
    

  
gr      1 1 .6877963539,jE s   (44) 

Ba2+(1):    cos cos 2 0.25 ,j zn   gr      1   0.7947950353,jE s   (45) 

Ba2+(2):   2
cos cos 2 0.09671 ,

3 3
yx

j z

nn
n

  
    

  
gr      1  0.6515284065,jE s   (46) 

O2−(1):    cos cos 2 0.5149 0.03699 0.25 ,j x y zn n n    gr     1  0.9016606636,jE s   (47) 

O2−(2):    cos cos 2 0.3302 0.1651 0.0802 ,j x y zn n n    gr     1  0.6683044552.jE s   (48) 

It can be seen that the energy    1
jE s  has 

the same value for 4.   The values are 
given with the accuracy indicating the 
absolute convergence of the series with 
respect to the reciprocal lattice vectors. 

Table 1 shows the energies    1
jE s  of the 

present work and the energies obtained in [3]. 
A small difference in the values of the 

energies    1
jE s  is due to the fact that the 

lattice constants in [3] were taken from [10], 
in which 5.735a  Å, 14.05c  Å. 

In this paper, we also calculated the diagonal matrix elements (34) on the 

   23
4 exp ,p x i ia x r  r     23

4 exp ,p y i ia y r  r     23
4 expp z i ia z r  r  

Table 1. The values of the energies of electron in 
the lattice site, i.e., in a point is obtained 

in the work [3] and the energies    1
jE s  of 

the present work (in a.u.). 

 The work [3] The present work 

Ba(1) 0.81144 0.7947950353 
Ba(2) 0.70417 0.6515284065 
Ti(1) 1.57409 1.4582510001 
Ti(2) 1.68474 1.6877963539 
O(1) − 0.88351 − 0.9016606636 
O(2) − 0.86721 − 0.6683044552 
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orbitals of oxygen O2−(1). The Hartree-Fock function of р-orbitals were taken from [11]. The following 
values were obtained. 

    * 0.77608 a.u.,p x j LR p x jH dV     r r r r  (49) 

    * 1.10451 a.u.,p y j LR p y jH dV     r r r r  (50) 

    * 0.857581 a.u.p z j LR p z jH dV     r r r r  (51) 

The values (49)-(51) have the splitting on the order of 2-8 eV and differ markedly from the value 
   1
jE s  in (47) obtained for a sufficiently localized s-orbital.  

5. Summary 

It is shown that there is the possibility of calculating LRCI matrix elements on orbitals of the arbitrary 
symmetry in the case of the low symmetry of the crystal. It can be seen from the expressions (32), (34) 

and (35) that the structure of the functions  1 2 3jF n n n  of this paper is the same as the structure of the 

functions (20) for the orthorhombic system [5]. The difference lies in the redefinition of the structural 
factor and the reciprocal lattice vectors. Thus, all expressions for the matrix elements on s, p, d, and 
f-orbitals obtained in [5, 6, 8] for orthorhombic systems can be used for low-symmetric systems with 
allowance for the above redefinition. 

This approach can also be used to derive two-centered LRCI matrix elements [5]. 
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