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Liouville-von Neumann equation has been solved numerically to calculate pulsed electron para-

magnetic resonance (EPR) signals rigorously in Liouville space taking into account relaxation

by spin-phonon modulation of hyperfine and g̃ tensors in single crystal and polycrystalline ma-

terials. It is illustrated here for a spin-coupled electron-nuclear system with the electron spin

S = 1/2 and nuclear spin I = 1/2 to calculate the spin echo correlation spectroscopy (SECSY)

and echo-electron-electron double-resonance (echo-ELDOR) signals. Both a single-crystal spec-

trum for a chosen orientation of the external magnetic field with respect to the crystal axes

and powder spectrum can be calculated. The flow chart for the simulation is included. The

calculations can be carried out on a PC using Matlab within a reasonable time. A software has

been developed in Matlab to do these calculations, which only requires to input the parameters

on a laptop equipped with Matlab software.

PACS: 76.30.-v, 76.70.Dx

Keywords: pulsed EPR, two-dimensional spin-echo-correlation spectroscopy (2D-SECSY),
two-dimensional electron-electron double-resonance (2D-ELDOR),
Liouville-von Neumann equation

1. Introduction

Two dimensional Fourier transform (FT)-pulsed EPR (Electron Paramagnetic Resonance; also

known as ESR: Electron Spin Resonance) experiments are useful in studying nuclear modulation

and relaxation effects, among others. Whereas both spin echo correlation spectroscopy (SECSY)

and echo-electron-electron double-resonance (echo-ELDOR) can be used to study the effect of

nuclear modulation on pulsed EPR signals, echo-ELDOR can, in addition, resolve better the

cross peaks due to exchange and nuclear modulation because of the extra provision of mixing

time, Tm, in the pulse sequence. One such study was reported by Lee, Patyal and Freed [1]

(hereafter LPF) on a γ-irradiated single crystal of malonic acid. This was a prototype study

to demonstrate the capabilities of two-dimensional (2D)-FT-ESR experiments in the study of

nuclear modulation. Single crystals are ideal systems to check the validity of experimental

approaches and accuracy of theoretical models. This objective was accomplished reasonably

well in [1]. However, the effects of static Hamiltonian and relaxation during the pulse were not

taken into account, and the calculations were not carried out for a polycrystalline (also referred

to as powder) material, which is the most often encountered situation since single crystals are

not always available. In order to take into account relaxation rigorously, it is imperative to

solve Liouville-von Neumann (LVN) equation, which is an exact quantum mechanical equation

of motion for the density matrix in Liouville space. The density matrix in Hilbert space in a

chosen basis set is written in vector form as a single column by stacking the successive columns

on the top of each other, the first column being on the top. The LVN equation is valid even for
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relatively slow random processes, and is therefore especially suitable for EPR, where the natural

time scale is short so that the random processes do not usually appear fast on this time scale.

A numerical simulation technique for calculating electron-nuclear spin-echo signals detected in

pulsed EPR experiments has been developed here. It is based on solving LVN equation, including

relaxation. It is the purpose of this paper to extend the calculations of [1] to a polycrystalline

(powder) sample, treating relaxation rigorously and including the static Hamiltonian during

pulses, using the LVN equation.

2. Theoretical background

The LVN equation considered here is time-independent, but includes a relaxation term, and a

time-dependent, but not in a stochastic fashion, that represents the pulses. The algorithm used

to compute the SECSY and echo-ELDOR spectra is outlined as follows. For more details of

the procedure used, see Misra and Li [2] (hereafter ML). The time evolution of the spin density

matrix, ρ(t), taking into account relaxation effects, is governed by the Liouville-von Neumann

(LNV) equation [1, 3–7]:
d

dt
ρ̂(t) = −i ˆ̂H ˆρ(t)− ˆ̂Γ(ρ̂(t)− ρ̂0), (1)

where ˆ̂Hρ̂(t) ≡ [Ĥ, ρ̂(t)] , ˆ̂Γ is the relaxation superoperator and i2 = −1. Since ρ0 is time

independent, Eq. (1) can be written as

d

dt
χ̂(t) = −i ˆ̂H ˆχ(t)− ˆ̂Γχ̂(t), (2)

where χ(t) = ρ(t)−ρ0 is the reduced density matrix. In Eq.(1), Ĥ = Ĥ0 +Ĥ1 is the Hamiltonian

operator, where Ĥ0 and Ĥ1 are its time-independent (static Hamiltonian) and time-dependent

(pulse) parts, respectively; ˆ̂Γ the relaxation superoperator, and assumed to be time independent

here. (Throughout the paper, the single and double carets, ˆ and ˆ̂ will be used to denote the

operators and the superoperators, respectively.) Equation (1) is an operator equation, which

can be expressed as a matrix equation in a given set of operators |i〉〈j|; i, j = 1, 2, . . . , n, where

|i〉 are the eigenvectors of Ĥ0. The coefficients, ρi,j , Hi,j in the expansion of the operators ρ̂

and Ĥ0 in this basis, respectively, are then used to write the corresponding matrix equation.

More details of the eigenvectors and eigenvalues of Ĥ0, as well the matrix representation for Ĥ1

for are given in Appendix A. The details of the relaxation matrix as described by Redfield [5]

are given in Appendix B.

2.1. Initial density matrix

In Eq.(1), ρ0 is the initial thermal equilibrium density matrix, governed by the Boltzmann distri-

bution for an electron spin 1/2 in thermal equilibrium. Using high-temperature approximation

and neglecting the energy-level modification by the hyperfine interaction which is much less than

the electronic Zeeman interaction we can write:

ρ0 =
exp(−~Ĥ/kT )

Tr[exp(−~Ĥ/kT )]
∝ 1− ~

kBT
Sz. (3)

Since the final signal is obtained by taking the trace: Tr(S+ρf ) and during the evolution of ρ0 to

ρf the term 1 in Eq (3) remains invariant, it does not contribute to the signal as Tr(S+1) = 0,

one can thus choose

ρ0 ∝ SZ (4)
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for the present calculations. Here Z-axis is defined to be aligned along the direction of the

external magnetic field. (It is noted here that Eq. (4) is only valid for spin 1/2. However,

for high spin quantum number systems S > 1/2, e.g. transition metal ions, characterized by

zero-field splitting interactions, the initial density matrix is different from that given by Eq. (4).

see e.g. [8, 9].)

2.2. Evolution of density matrix

Free evolution. As described by ML [2] in the absence of pulse (free evolution), the density

matrix ρ(t), expressed in Liouville space, becomes, after a period of time ∆t:

χ̂(t+ ∆t) = e−∆t
ˆ̂
L
′
χ̂(t), (5)

where
ˆ̂L′ ≡ i ˆ̂L+ ˆ̂Γ (6)

and the Liouvillian,
ˆ̂L ≡ (In ⊗ Ĥ − ĤT ⊗ In). (7)

Here ⊗ denotes direct product and In is the 2 × 2 unit matrix in the nuclear space. In what

follows, ρ(t) will be used instead of χ(t).

Action of a pulse. The density matrix under the action of a pulse, Ĥ1, taking into account

the static Hamiltonian H0 becomes [2]

ρ̂(t+ ∆t) = e−∆t(
ˆ̂
P+

ˆ̂
Γ)ρ̂(t), (8)

where the generalized pulse propagator, ˆ̂P , including the static Hamiltonian, is

ˆ̂P ≡ i[In ⊗ (Ĥ1 + Ĥ0)− (Ĥ1 + Ĥ0)T ⊗ In]. (9)

Numerical implementation of Eqs. (5) and (8) to compute pulsed EPR signals is outlined below

in section 3.

2.3. Rotating frame

The calculations are carried out in the rotating frame in which the effective magnetic field

Beff = (B − ~ω/gµB) = 0. During the free evolution, in the absence of a pulse, one can still

use the rotating-frame value B = Beff = 0. Then the Zeeman term of the static Hamiltonian

becomes zero both during, and in the absence of, a pulse.

3. Numerical computation of SECSY and echo-ELDOR pulsed-ESR signals

3.1. Pulse sequence

The pulse sequences and the relevant coherence pathways are shown in Figs. 1 and 2, respec-

tively, for SECSY and echo-ELDOR computation [1, 10, 11]. In the calculation, one starts with

the (un-normalized) initial density matrix in thermal equilibrium, as given by Eq. (4), for the

electron spin S = 1/2. (The normalization is performed at the end of the calculation). The

pulse sequence, as shown in Figs. 1 and 2, respectively, for SECSY and echo-ELDOR signals,

transforms the initial density matrix under the successive action of pulses and subsequent free-

evolutions.

During the pulse sequence, a k-th pulse is applied at the time t. It acts during the time,

∆t, in the frame of reference rotating with the angular frequency of the circular component of
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Figure 1. (Top) Pulse sequence for obtaining SECSY signal. The t1 time between the two pulses and

t2 time from the echo are stepped. (Bottom) The coherence pathway Sc− used for calculating

SECSY signal for an unpaired electron (S = 1/2) interacting with a single nucleus (I = 1/2)

is shown by the solid line. Here p is the coherence order, which represents transverse magne-

tization, corresponding to spins rotating in a plane perpendicular to the external field [12].

Figure 2. (Top) Pulse sequence for obtaining echo- ELDOR signal. The t1 time between the first two

pulses and t2 time from the echo are stepped. Here Tm is the mixing time. (Bottom) The

coherence pathways used for calculating 2D-ELDOR signal for an unpaired electron (S = 1/2)

interacting with a single nucleus (I = 1/2) is shown by the solid line. Here p is the coherence

order, which represents transverse magnetization, corresponding to the spins rotating in a

plane perpendicular to the external field [12].

microwave magnetic field at the Larmor frequency of the electron spin. It transforms the density

matrix, ρ̂(t), according to Eq. (8). The action of a pulse produces, in general, a change in the

coherence order, p [12]. In order to follow the coherent pathway, pk, of interest, the density

matrix is then projected onto the coherence pathways pk, which are chosen after the pulses

according to Figs. 1 and 2, respectively, for SECSY and echo-ELDOR signals, as follows:

ρ̂′(t+ ∆t) = P (pk)ρ̂(t+ ∆t), (10)

where the idempotent operator P (pk) projects the density matrix on to the coherence pathways

pk to be followed after the k-th pulse. As shown in Figs. 1 and 2, the successive coherence path-

ways followed are p = (1); (−1) and p = (1); (0); (−1) for SECSY and echo-ELDOR, respectively

for the respective Sc− pathways. More details of coherence pathways are given in Appendix C.

3.2. Free evolution

Subsequent to the action of a pulse, the free evolution during the time ∆t transforms the density

matrix according to Eq. (5).

4 Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 5, 19505 (16 pp.)
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3.3. The final density matrix (ρf)

Single crystal. For a single crystal, for the external field, B0, orientation at the angles (θ, φ),

where θ is the angle between B0 and the z axis, and φ is the angle between the x axis and the

projection of B0 on the xy plane (see Fig. 3 below) ρf is a function of two times, t1 and t2,

which are stepped in the experiment, as seen from Figs. 1 and 2, respectively for SECSY and

echo-ELDOR signals. The complex signal is

S(t1, t2, θ, φ) = Tr(S+ρf ), (11)

where S+ = Sx + iSy. The measured absorption signal is the imaginary part of S(t1, t2, θ, φ) as

given by Eq. (11).

Figure 3. Relation of the principal axes (x, y, z) of the g̃, hyperfine matrices, assumed coincident to the

structure of the malonic acid radical CH(COOH)2. Here, the z axis is along the C-H bond

direction and the x axis is perpendicular to the plane of the three carbon atoms [13]. The

direction of the external static field B0 is defined by the angles θ and φ, where θ is the angle

between B0 and the z axis, and φ is the angle between the x axis and the projection of B0 on

the xy plane.

Polycrystalline (powder) sample. The echo signal for a polycrystalline (powder) sample is

the average of the signals over the orientations (θ, φ) over the unit sphere of the molecule with

respect to the external field, B0, in the laboratory frame (Fig. 3):

Spdr(t1, t2) =

2π∫
0

dφ

π∫
0

S(t1, t2, θ, φ) sin(θ) dθ. (12)

For powder average in an isotropic medium it suffices to set the integration limits to [0, π/2]

in the axial angle θ and [0, π] in the azimuthal angle φ. The integral, as given by Eq. (12), is

performed by a summation over the unit sphere over the angles (θj , φk) [14]:

Spdr(t1, t2) =
∑
θj ,φk

S(t1, t2, θj , φk) sin(θj). (13)

The Fourier transform, S(ω1, ω2), of the imaginary part of S(t1, t2) is the 2D-FT ESR signal.

As the static spin Hamiltonian as given in Eq. (A.2) in Appendix A is given in terms of

the Euler angles (β, γ) rather than in terms of (θ, φ), it will be easier to use (β, γ) instead of

(θ, φ). It is shown in Appendix D that if one were to use β,γ instead of θ,φ, respectively, the

Magnetic Resonance in Solids. Electronic Journal. 2019, Vol. 21, No 5, 19505 (16 pp.) 5
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polycrystalline integral given by Eq. (12) has the same value. Consequently, it is easier to use

the integral

Spdr(t1, t2) =

2π∫
0

dγ

π∫
0

S(t1, t2, β, γ) sin(β)dβ. (14)

Accordingly, the summation (13) for the calculation presented here is changed to

Spdr(t1, t2) =
∑
βj ,γk

S(t1, t2, βj , γk) sin(βj). (15)

The flow chart for the calculation of pulsed signal is given in Appendix E.

3.4. Gaussian inhomogeneous broadening effect

In accordance with that used in LPF [1], the Gaussian inhomogeneous broadening effect in the

frequency-domain along ω2 (= 2πν), corresponding to the step time t2, (Figs. 1 and 2), is taken

into account by the following time-domain dependence:

fb(t2) = f(t2)
1√

2π∆

∫ ∞
−∞

exp

(
−ν2

2∆2
− i2πνt2

)
dν = f(t2)e−2(π∆t2)2 , (16)

where fb(t2) is the Gaussian-broadened signal along t2 and ∆ is the Gausssian inhomogeneous

broadening parameter expressed in frequency units.

4. Illustrative examples

The examples considered for illustration here are the same as those considered in [1] for the

single-crystal case. In addition, they are generalized to cover polycrystalline case. The sample

used is an irradiated malonic-acid crystal [13], wherein an unpaired electron spin S = 1/2, is

in interaction with a single nucleus, I = 1/2, by hyperfine (HF) interaction, with the principal

axes of the hyperfine (HF) matrix Ã and those of the g̃ matrix assumed to be coincident. The

orientations of the crystalline axes x, y, z are shown in Fig. 3, whose caption describes the angles

(θ, φ), which can be related to the Euler angles: η = (α, β, γ).

The details of the spin Hamiltonian and the basis vectors used are given in Appendix A. The

values of the various parameters used are as follows: each π/2 pulse is of duration 5 ns; the

nuclear Zeeman frequency ωn = 14.5 MHz; the principal values of the g̃ and Ã matrices are:

g̃ = (gxx, gyy, gzz) = (2.0026, 2.0035, 2.0033); Ã = (Axx, Ayy, Azz) =(−61.0 MHz, −91.0 MHz,

−29.0 MHz); the Gaussian inhomogeneous broadening ∆ = 4 MHz for SECSY signal and ∆ =

5 MHz for echo-ELDOR signal.

The input values used for the parameters describing the relaxation matrix in the simulation

of the time-domain signals are as follows (the same as those used in [1]): electron spin-spin

relaxation time, T2e = 0.900µs; nuclear spin-spin relaxation time, T2n = 22µs; lattice-induced

electron-spin flip relaxation rate, We = 0.0167µs−1; lattice-induced nuclear-spin flip relaxation

rate, Wn = 0.00714µs−1; the cross relaxation rates involving simultaneous electron and spin flips

Wx = Wy = 0.00617µs−1; the inverse Heisenberg exchange relaxation time, ωHE = 0.0µs−1.

The single-crystal SECSY and echo-ELDOR time-domain signal were calculated here for illus-

tration for the orientation (θ, φ) = (30◦, 0◦) in the zx-quadrant, so that (α, β, γ)= (0,−θ, 0) [1]

as shown in Figs. 4 and 5, respectively. The powder simulations are included in Figs. 6 and 7,

respectively for SECSY and echo-ELDOR signals without Gaussian broadening, and in Figs. 8

and 9, respectively, with Gaussian broadening.
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Figure 4. Simulated single-crystal SECSY time-domain signal with relaxation taken into account at

(θ, φ) = (30◦, 0◦) orientation of the external magnetic field with respect to the crystal axes in

the zx quadrant [1], shown in the top row. The corresponding FT figures are shown in the

second row. A Gaussian inhomogeneous broadening width ∆ = 4 MHz in accordance with [1]

has been added along the t2 axis in calculating the Fourier transform as shown in the right

column for the time domain and FT signals. The corresponding SECSY experimental spec-

trum as extracted from LPF [1] is shown in the bottom row for comparison. It is reproduced

with the permission of the authors [1].
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Figure 5. Simulated single-crystal echo-ELDOR time-domain signal with relaxation taken into account

at (θ, φ) = (30◦, 0◦) orientation of the external magnetic field with respect to the crystal axes

in the zx quadrant [1], with the mixing times Tm = 40µs, shown in the in the top row. The

corresponding FT figures are shown in the second row. A Gaussian inhomogeneous broadening

width ∆ = 5 MHz in accordance with [1] has been added along the t2 axis in calculating the

Fourier transform as shown in the right column for the time domain and FT signals. The

corresponding echo-ELDOR experimental spectrum as extracted from LPF [1] is shown in the

bottom row for comparison. It is reproduced with the permission of the authors [1].
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Figure 6. SECSY polycrystalline spectrum, for the (θ,φ) grid: nθ = 90, nφ = 90, without Gaussian

inhomogeneous broadening. The simulated time-domain signal is shown on the left and the

corresponding FT is shown on the right.

Figure 7. Echo-Eldor polycrystalline spectrum, for the (θ,φ) grid: nθ = 90, nφ = 90, without Gaussian

inhomogeneous broadening. The simulated time-domain signal is shown on the left and the

corresponding FT is shown on the right. The mixing time, Tm, as indicated in Fig. 2, is 40µs.
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Figure 8. SECSY polycrystalline spectrum, for the (θ,φ) grid: nθ = 90, nφ = 90, with Gaussian inhomo-

geneous broadening of ∆ = 4 MHz added in accordance with [1]. The simulated time-domain

signal is shown on the left and the corresponding FT is shown on the right.
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Figure 9. Ecgo-ELDOR polycrystalline spectrum, for the (θ,φ) grid: nθ = 90, nφ = 90, with Gaussian

inhomogeneous broadening of ∆ = 5 MHz added in accordance with [1]. The simulated time-

domain signal is shown at the left and the corresponding FT is shown on the right. The

mixing time, Tm, as indicated in Fig. 2, is 40µs.

5. Concluding remarks

This paper is devoted to a rigorous calculation of pulsed EPR signal in the presence of relaxation,

providing a comprehensive theoretical treatment by numerically solving the LVN equation, in-

cluding a detailed description of the relaxation processes as described by the Redfield theory [1].

The procedure of how to implement the theoretical approach numerically has been developed,

and the applied algorithm and individual computational steps have been thoroughly discussed

for a polycrystalline sample, and illustrated by examples.

The salient features of the present work are as follows.

1. An algorithm is developed here to calculate polycrystalline (powder) spectrum using MAT-

LAB to calculate SECSY and echo-ELDOR pulsed-EPR signals for an electron-nuclear spin

coupled system (S = I = 1/2) in an irradiated malonic-acid crystal.

2. These calculations can be easily carried out on a commonly available lap top equipped

with Matlab within a reasonable time, on the order of 25-30 hours over a (θ, φ) grid of

(90, 90) points.

3. The Matlab source code, see Misra and Salahi [15], can be modified to include any pulse

sequences and any relaxation mechanism characterized by its particular matrix elements.

Such and effort is in progress to take into account relaxation due to fluctuation of spin-

Hamiltonian parameters due to spin-phonon modulation.
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Appendices

A. Spin Hamiltonian for an electron-nuclear spin-coupled system in an irra-

diated malonic acid crystal

For the specific case of a single nucleus (I = 1/2) interacting with an unpaired electron (S =

1/2) by the hyperfine (HF) interaction, where the HF-interaction matrix has the principal axes

coincident with those of the g̃ matrix, the total Hamiltonian can be expressed as the sum of a

static Hamiltonian and a pulse Hamiltonian [1]

Ĥ = Ĥ0 + Ĥ1. (A.1)

In high-field approximation, nonsecular terms are negligible and static Hamiltonian can be

written as:

H0 =
Ĥ0

~
= CSZ − ωnIZ +ASZIZ +

1

2
BSZI+ +

1

2
B∗SZI− (A.2)

which can be expressed in matrix form in SzIz basis as:
(C − ωn +A/2)/2 B/4 0 0

B∗/4 (C + ωn −A/2) 0 0

0 0 −(C + ωn +A/2) −B/4
0 0 −B∗/4 (−C + ωn +A/2)

 . (A.3)

The pulse Hamiltonian is:

Ĥ1(t) = ε̂(t) = B1γe(Sx cos(φ) + Sy sin(φ))1n =
ω

2
(e−iφS+ + eiφS−)1n. (A.4)

In Eq. (A.4) B1 is the amplitude of the microwave field, γe is the electron gyromagnetic factor,

ω is the angular frequency of the microwave field and 1n is 2× 2 unit matrix in nucleus space.

The coefficients in Eq. (A.2) in angular frequency units (Energy/~, where ~ is Planck’s con-

stant divided by 2π) unit are expressed as follows [1]:

C =
βeB0

h

[
ḡ + F

1

2
(3 cos2 β − 1) + F (2) sin2 β cos(2γ)

]
, (A.5)

A = −2π

[
ā+D

1

2
(3 cos2 β − 1) +D(2) sin2 β cos(2γ)

]
, (A.6)

B = −4π

{
D

3

4
sinβ cosβ −D(2) 1

2
sinβ[cosβ cos(2γ)− i sin(2γ)]

}
(A.7)

and

ḡ =
1

3
(gxx + gyy + gzz), (A.8)

ā =
1

3
(Axx +Ayy +Azz). (A.9)

Here ḡ is the isotropic part of the g̃-matrix; ā is the isotropic part of the Ã-matrix. (It is

noted that in LPF, there were misprints, which have been corrected in the above equations. In

particular, insted of having the factors 2π in Eq. (A.6) and 4π in Eq. (A.7), there was a factor

γe/~ in both places in LPF.

F =
2

3

(
gzz −

1

2

(
gxx + gyy

))
, (A.10)
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D =
2

3

(
Azz −

1

2

(
Axx +Ayy

))
, (A.11)

F (2) =
1

2

(
gxx − gyy

)
, (A.12)

D(2) =
1

2

(
Axx −Ayy

)
. (A.13)

Here ωn is the nuclear Larmor frequency, Ω(α, β, γ) are the Euler angles which describe the

orientations of the principal axes of the g̃ -matrix with respect to the static magnetic field and

the principal axes of the hyperfine matrix Ã are assumed coincident with those of the matrix

g̃. Since all the calculations are carried out in rotating frame, for which the effective field

(B = Beff = 0), the value of C in (A.5) becomes equal to zero as it is proportional to B.

B. Relaxation matrix elements according to Redfield theory

The effect of spin relaxation is taken into account to describe the rate of change of the density

matrix as outlined by LPF, using the Redfield theory [1]:

d

dt
ραα′(t) = −iωαα′ραα′ −

∑
ββ′

ˆ̂Rαα′ββ′
(
ρββ′ − ρ0ββ′

)
(B.1)

with

ωαβ = Eα − Eβ, (B.2)

where Eα, Eβ are the eigenvalues of the static Hamiltonian, Ĥ0, for the electron-nuclear coupled

system (S = 1/2, I = 1/2) as given by Eq. (A.2).

In Eq. (B.1), ˆ̂Rαα′ββ′ are the relaxation matrix elements, where α, α′, β, β′ designate the

eigenstates of the Hamiltonian Ĥ0. The following specific values for the matrix elements, as

given by Freed [16–18], are used here:

ˆ̂Rαβ,αβ = −
( 1

T2

)
αβ
, (B.3)

ˆ̂Rαα,ββ = Wαβ, (B.4)

ˆ̂Rαα,αα = −
∑
γ 6=α

Wαγ . (B.5)

Otherwise
ˆ̂Rαβ,ζη = 0. (B.6)

The relaxation pathways among the various eigenstates of the coupled electron-nuclear spin

system in the lattice, as defined in the H0 basis [16], are shown in the figure below, where

|a〉 and |b〉 indicate the nuclear sublevels coupled to the electronic magnetic quantum number

MS = 1/2 and |c〉 and |d〉 indicate the nuclear sublevels coupled to the electronic magnetic

quantum number of MS = −1/2. It is assumed, with reference to the above diagram, that [1]

Wab = Wba = Wcd = Wdc = Wn, (B.7)

Wac = Wca = Wbd = Wdb = We, (B.8)

Wad = Wda = Wy, (B.9)

Wbc = Wcb = Wx (B.10)
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and

(T2)ac = (T2)bd = (T2)ad = (T2)bc = T2e, (B.11)

(T2)ab = (T2)cd = T2n. (B.12)

All matrix elements ˆ̂Rαβ,ζη = 0, except for the non-zero elements of the relaxation matrix

corresponding to the above diagram, as obtained from Eqs.(B.3) -(B.6)), which are [1]:

ˆ̂Rab,ab = ˆ̂Rba,ba = ˆ̂Rcd,cd = ˆ̂Rdc,dc = − 1

T2n
, (B.13)

ˆ̂Rac,ac = ˆ̂Rca,ca = ˆ̂Rad,ad = ˆ̂Rda,da = ˆ̂Rbc,bc = ˆ̂Rcb,cb = ˆ̂Rbd,bd = ˆ̂Rdb,db = − 1

T2e
, (B.14)

ˆ̂Raa,aa = ˆ̂Rdd,dd = −We −Wn −Wy, (B.15)

ˆ̂Rbb,bb = ˆ̂Rcc,cc = −We −Wn −Wx, (B.16)

ˆ̂Raa,bb = ˆ̂Rbb,aa = ˆ̂Rcc,dd = ˆ̂Rdd,cc = Wn +
ωHE

4
, (B.17)

ˆ̂Raa,cc = ˆ̂Rbb,dd = ˆ̂Rcc,aa = ˆ̂Rdd,bb = We +
ωHE

4
. (B.18)

Here ωHE = 0 as used by LPF [1].

C. Coherence pathways

A coherence pathway is the sequence of coherence orders through which the magnetization

evolves during a pulse sequence. All experiments start with zero order coherence (z-magnetization)

and end with a coherence order of −1, which is by convention the one that is detected by the

quadrature detector. Without quadrature detection the +1-coherences would be equally de-

tectable. It is noted that all higher orders are not correlated with the observable magnetization.

The selection of the appropriate coherence pathways can be experimentally achieved by phase

cycling, or by the use of pulsed field gradients [19–21]. The properties of the RF-pulses, e.g.

flip angle, offset effects, inhomogeneity, require a weighting over the different coherence transfer

pathways [9, 12, 22]. The coherence pathways Sc− for obtaining SECSY and echo-ELDOR sig-

nals, used commonly, are depicted in Figs. 1 and 2, respectively.

Selection of coherent pathways by appropriate selection of the corresponding ele-

ments of the density matrix. For single electron-nuclear coupled system with electron spin

S = 1/2, nuclear spin I = 1/2, the dimension of the coupled spin Hamiltonian is (2S1 + 1) ⊗
(2I1 + 1) = 4, so that the density matrix in the electron-nuclear spin-coupled direct product

space the total density matrix ρ = ρe ⊗ ρn , where ρe and ρn are, respectively, the density ma-

trices in the electronic and nuclear subspaces, In the following, the coherence order p represents

the transverse magnetization corresponding to the spins rotating in a plane perpendicular to the

external field [23, 24]. The matrix elements for the various coherence orders are defined as fol-

lows, which will be consistent with the experimental technique to acquire a particular coherent

pathway.
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• For the pathway with the coherence order p = 1, all matrix elements of the density matrix,

ρe, are put equal to zero, except for those corresponding to ρe(1,2).

• For the pathway with the coherence order p = 0, all matrix elements of the density matrix,

ρe, are put equal to zero, except for those corresponding to ρe(1,1) and ρe(2,2).

• For the pathway with the coherence order p = −1, all matrix elements of the density

matrix, ρe, are put equal to zero, except for those corresponding to ρe(2,1).

D. The relationship between (α,β,γ) and (θ,φ)

The spin Hamiltonian (A.2) is expressed in the principal-axes system of the magnetic matrices g̃

and Ã (xyz; Fig. 3), assumed to be coincident with each other. It will, therefore, be convenient

for calculating powder average to carry out integration using the Euler angles (β, γ), instead

of the angles (θ, φ) as is usually done for powder averaging over the unit sphere. In order to

transform the laboratory coordinate system (XY Z; where Z is in the direction of the external

magnetic field) to the principal-axes system of the magnetic matrices g̃ and Ã (xyz) one needs,

in general, three Euler angles (α, β, γ). When there is no restriction on choosing the orientations

of the axes X and Y , as is the present case, it is always possible to set the first Euler angle to zero

(α = 0), which is required for the discussion that follows. In order to set α equal to 0, one needs

to choose the Y axis along the line of nodes, defined by the intersection of the xy and XY planes,

using the convention in LPF, i.e. right-handed coordinate system, counterclockwise rotations

and choosing second rotation around the new Y axis. Now, one only needs two rotations to

bring in coincidence Z to z and X to x. The relationship between the angles (β, γ) and (θ, φ) is

found to be different in different octants, as given in Table 1, which also defines the quadrants

1 - 8 .

Table 1. The relationship between (β, γ) and (θ, φ) in the different quadrants indicated as 1-8

0 ≤ θ < π/2 π/2 ≤ θ < π

0 ≤ φ < π/2
β = −θ, γ = −φ β = θ, γ = π − φ

1 5

π/2 ≤ φ < π
β = θ, γ = π − φ β = −θ, γ = −φ

2 6

0 ≤ φ < π/2
β = −θ, γ = −φ β = θ, γ = π − φ

3 7

π/2 ≤ φ < π
β = θ, γ = π − φ β = −θ, γ = −φ

4 8

One can substitute β for θ and γ for φ, to calculate the powder average done over all possible

angles (θ, φ) on the unit sphere, that includes the quadrants 1 - 8 as defined in Table 1. This

is possible because of the following facts: (i) the relationships between (β, γ) and (θ, φ) given

in Table 1; (ii) the equivalence of the eigenvalues and eigenvectors of the spin Hamiltonian

given by Eq. (A.2) for quadrants 1 and 2 to those in quadrants 3 - 8 . This is seen as

follows: For any (β, γ) in quadrant 1 , there exist sets of (β, γ) in each of the quadrants 3 ,

6 and 8 , which have the same eigenvalues and eigenvectors of the spin Hamiltonian given by

Eq. (A.2). The same relationship of the eigenvalues and eigenvectors holds true for quadrant
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2 with the quadrants 4 , 5 and 7 . It is noted that both the eigenvalues and eigenvectors

in the powder calculation are required in order to transform the Liouvillian as given by Eq. (7)

to the eigenvalues basis from that in the SZIZ basis as given in Eq. (A.3) to take into account

the relaxation matrix in the eigenvalue basis, given by Eqs. (B.3)-(B.6); However, integration

over only the top quarter sphere: β[0, π/2] and γ[0, π], that is over the quadrants 1 and 2

is required, since the integration over each of the reaming three quarter spheres to cover the

entire sphere will give the same result as found by the equivalence argument given above. This

simplification reduces the time required to carry out the calculation by the factor of 4.

E. Flow chart

Input the values of the parameters g̃ , Ã, specif-

ically the numbers of β, γ on the unit sphere

grid, pulse times, etc. as described in Sec. 4.

Calculate the initial density matrix ρ0(∝ SZ)

Calculate ρ(t0 + tp), using Eq. (8),

after the application of a pulse

Calculate ρ(t) using

Eq. (5) for free evolution.

Repeat for the

next pulse, and

subsequent free

evolution, if needed.

After the last pulse and subsequent

free evolution go to the next step

Calculate the time-domain final density

matrix ρf(t1, t2) as a function of t1 and t2
times over the coherence pulse sequence

Sc− , shown in Figs. 1 and 2, respectively, for

2D-SECSY and 2D-Echo ELDOR signals.

Calculate the time-domain absorption signal

S(t1, t2) = Imag(Tr[(Sx + iSy)ρf(t1, t2)])

Calculate the 2D Fourier transform of

S(t1, t2), and if desired take into account

the Gaussian inhomogeneous broadening

effect over t2 time as given by Eq. (16).
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