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We suggest an approach using machine learning random forest algorithms to comparing and

calibrating the results of calculations of transition energies in organic molecules by ZINDO/S

(Zerner’s intermediate neglect of differential overlap) and TDDFT (time-dependent density-

functional theory) methods. We show how our machine learning model, trained on a relatively

small data set can improve the results of semi-empirical methods and obtain absorption spectra

comparable to TDDFT calculations.

PACS: 76.30.-v, 68.65.-k
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1. Introduction

There are three main approaches to modeling electronic properties of molecules that, in one or

another way, approximate the solution of Schrödinger equation: wavefunction based methods,

DFT (density functional theory), semi-empirical methods [1, 2]. As the accuracy of calcula-

tions increases, their duration or, in other words, their computational cost increases as well [3].

Recently, a number of studies [4,5] from different fields of science, including computational chem-

istry [6,7], demonstrate extensive possibilities of machine learning methods to solve the problem

described above. However, as a rule, they use a huge amount of data for training. The number

of different molecules used varies from a few thousand [8] to hundreds of thousands [9–11]. In

our work, we try to solve a less general problem of building a connection between different types

of calculations using a relatively small dataset. Specifically, we model the electronic excitation

spectra of molecules. For our research, we chose to calculate the first 10 excitation transi-

tion with TDDFT method by B3LYP functional [12] and the same thing with using ZINDO/S

semi-empirical methods [13]. TDDFT is an extension of DFT, and can be formulated by the

time-dependent Kohn-Sham equation [14,15] for electron density ρ(r, t):

i
∂

∂t
ϕi(r, t) =

[
−∇

2

2
+ Veff [ρ](r, t)

]
ϕi(r, t). (1)

Here ϕi(r, t) are time dependent orbitals, which can be propagated from initial condition. The

effective potential Veff (r, t) can be written as following:

Veff (r, t) = V (r, t) +

∫
d3r′

ρ(r′, t)

|r− r′|
+ Vxc(r, t). (2)

First two parts are nuclear potential and electron-electron potential (Hartree) potential. Last one

is the exchange correlation potential. There are number of functionals to approximate exchange-

correlation potential. One of the broadly accepted examples is B3LYP (Becke-3 Parameter-Lee-

Yang-Parr [12]). This functional is popular for many reasons. It was one of the first DFT

methods that were a significant improvement over Hartree-Fock and fairly robust for a DFT

functional. This functional is efficient for calculating UV/Vis spectra, and compared to other

functionals it shows good accuracy [16]. For example, singlet and triplet transitions the accuracy
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of energy is in the order of 0.1 eV [17]. The Schrödinger equation for molecules is solved by semi-

empirical methods using some another level of approximation. All methods in this group can be

unite by the idea that the calculation is carried out only for valence electrons; integrals of certain

interactions are neglected; standard non-optimized basic functions of electronic orbits are used

and some parameters obtained in the experiment are used [2, 18]. The ZINDO/S method is

a version of the INDO (Intermediate Neglect of Differential Overlap) method parametrized to

reproduce UV and visible optical transitions in the calculation of configuration interaction (CI)

with single-part excitations [13]. It has been widely used in studies of organic molecules [19,20].

Usually, the accuracy of ZINDO results increases with the size of the system [21]. There are

many papers [22–24] in which researchers have chosen one or the other method according to their

capacity and accuracy requirements. Examples of ZINDO and TDDFT calculation differences

are shown in Fig. 1. We would like to show that it is possible to build a bridge between these

methods through the simplest machine learning algorithms and to get corrections to ZINDO,

reducing the error in comparison with TDDFT. The main goal of this work is to show that there

are relatively simple ways to improve quantum-mechanical calculations results without needs of

big datasets and much additional computational time.

Figure 1. The spectra of two molecules (a) Glutaral and (b) Aziridine computed using TDDFT (bottom)

and ZINDO (top). Insets are plotted in same energy range with intensity in logarithmic scale.

The graphs show difference between two methods. The spectrum of molecule (a) is well

described by ZINDO, while for other molecule (b) there is sufficient difference.

2. Data preparation

Usually working with any neural network using methods needs to compute a large number of

training data. For fast fitting and thus rapid hypothesis testing we take very small number

(81) different compounds. We upload all compounds using PubChem database facilities [25].

All molecules can be seen in the appendix (Fig. 13). Further preparations for the dataset are

shown in the Fig. 2. Based on each optimized molecule, we generate 5 other geometries by small

random displacements in the positions of the atoms. As a result of displacements, the distances

between atoms are changed less than 10% relatively to initial range. We end up with 5×81 = 405

different structures and compute for each of them 10 first excitations with two methods. The

Fig. 3 shows how computation time depends on the number of atoms in the structure. One

can see how the molecular size growing leads to increasing the calculation time, but differently

for different methods. The average value of the calculation time ratio is 72.3; the maximum

ratio is about 500. The calculated 10 excitations for each of the 405 molecules form 405 pairs
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Figure 2. An illustration of how we prepare the dataset. We write the properties of each molecule into

a .xyz file and remake 5 times with random deviations in the coordinates of atoms. There is

10 transitions (their energy and oscillator strength) using the TDDFT and ZINDO methods.

We use the results of their calculations (matrices of size (2,10)) in the dataset as a X−Y pair

for further regression by the Random Forest algorithm.

Figure 3. Evaluation of calculation time by two different methods. Depending on the size of the molecule

(number of atoms) the calculation time of ZINDO method grows linearly. On the graph

almost all values do not exceed 15 seconds. In case of TDDFT, the calculation time increases

exponentially and is defined in minutes.

Figure 4. Graphical representation of properties of a training dataset. Each transition is marked with a

point according to its oscillator force and wavelength is calculated using ZINDO and TDDFT.

All points are colored according to their transition number (N). The graphs illustrate that the

wavelength is predicted by ZINDO demonstrates a high correlation with the values predicted

by TDDFT. In contrast, the oscillator strength looks very difficult to predict.
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of input-target for our future regression algorithm. Each of the 405 input vectors contains

information about the transition energy (wavelength) and intensity in terms of the oscillator

strength. Fig. 4 shows the correlations between the transitions computed using ZINDO and

TDDFT for each transition in the dataset. The noticeable linear dependence between them is

confirmed by the large value of the correlation coefficient 0.92. The Fig 4(b) is plotted similarly,

but only for the oscillator strength for each transition. There is a much lower 0.11 correlation

here. This is usually interpreted as the absence of a linear relationship, but this does not exclude

the possibility of finding deeper and more complex relationships between values.

3. Random Forest algorithm

For our case, we choose the simplest and most efficient machine learning algorithm at the same

time. Random Forest algorithm [26] is a solid choice for nearly any prediction problem (even

non-linear ones). It belongs to a larger class of machine learning algorithms called ensemble

methods. Random Forest is a powerful ensemble learning method, as it relies on an ensemble of

decision trees [27]. Among the advantages of this method are the following: Computationally

simple and straigthforward to fit [28]; handles highly non-linear interactions and classification

boundaries; the accuracy of results is competitive with the other machine learning methods. Also

it is essential in natural sciences that the random forest algorithms demonstrate the stability

of the output results, as they consist of a large number of random estimators [29, 30]. The

algorithm was implemented by means of Python3 programming language, in particular by using

Numpy [31], Scipy [32], scikit-learn libraries [33], all drawings were drawn using matplotlib

library [34]. The transition properties were calculated using the ORCA program package [35].

One can check out the short Random Forest algorithm description in Fig. 5. For our task,

we choose the following parameters: The number of trees in the forest is 512, and without

limitations for maximal depth. The number of trees was chosen for optimal computational costs

and model accuracy. For network training, we divide the original dataset by 80% to 20% for

training and testing. Because the output values have a different order of magnitude, we can

not apply standard score metrics. To evaluate the results, we calculate excitation in additional

Figure 5. Random Forest Algorithm Description. From the main training set is extracted randomly

subsets, on the basis of which the regression trees are built. Each of the trees makes a

decision, and this decision is made with a certain weight. Then all the decisions are averaged

according to their weight and a prediction is obtained.

8 molecules, which are not in the original training set. They are called from ‘A’ to ‘H’ for

simplicity, they contain from 8 to 20 atoms. Full names of molecules are deciphered in Table 1.

The Fig. 6 shows how the original ZINDO error (called as initial error) is related to the error

that remains after applying the random forest (RF) algorithm. For wavelengths, we consider
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Table 1. Eight A-H test molecules description.

A B C D

Aziridine Arabinose D-Glucuronic Acid Erythrose

E F G H

Aspartic acid Dinitrotoluene Mequinol Muscimol

Figure 6. The bar chart represents a relative error of predictions. Due to the peculiarities of the data,

the relative percentage error is selected for the wavelength (b) and the absolute error is selected

for the oscillator force (a). One can see that for all connections except the latter, the RF error

is less than that of ZINDO.

the mean absolute percentage error, and in Fig. 6(b) it mainly decreases as a result of the use

of our approach. With the exception of the H molecule, in this case the error increases.

We apply a different metric for the oscillator strength because the percentage error can reach

high values for some transitions. So, we just count the mean absolute error. With this metric,

we get a decreasing of the error (see Fig 6) although we did not hope for it.

In Fig. 7 the spread shows how the ZINDO results are modified using the algorithm. Fig. 7(b)

shows how the wavelength related dots is shifting towards the diagonal, which is the TDDFT

value line. As for the oscillator strength, figure 7(a) does not show a better result. However,

the correlation between values has increased. The initial correlation coefficient for this test set

was −0.03, and then after applying the algorithm, it become 0.36.

Figure 7. Comparison of wavelength and oscillator strength before and after application of the algo-

rithm to the test molecules. The ZINDO and RF values are arranged horizontally and the

corresponding TDDFT values along the vertical axes (similar to Fig. 4). The (b) shows the

algorithm is close to the correct one and therefore many points are located near the diagonal.
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To evaluate the correctness of the spectra profile, we introduce the IC is intersection coeffi-

cient. For this purpose, we build the spectra using TDDFT and the Gauss shape with σ = 0.4 ev.

We do the same with ZINDO and RF

IC =
ATDDFT ∩AZINDO

ATDDFT ∪AZINDO
, (3)

where ATDDFT is an area under TDDFT spectrum curve, and AZINDO is an area under ZINDO

spectrum curve. We inverse this coefficient as (1 − IC) to estimate error. Fig. 8(a) shows

this error for different test molecules. At the same time, narrowing or expanding spectra

Figure 8. IC (3) error indicator. Small values mean that the spectra graphs coincide. We can see that

this graph correlates with Fig. 6(b).

lines always reduce the IC value. To detect such cases, we calculate the Pearson correlation

coefficient between the pairs of spectra ZINDO/TDDFT and RF/TDDFT. If the correlation

coefficient values are close to 1, this indicates an almost linear dependence between the point

coordinates. Since the correlation coefficient (CC) meets the conditions |CC| 6 1, we draw chart

(1 − CC) on Fig. 8(b) similarly to Fig. 8(a). We select 8 molecules for the tests. The spectra

of only some molecules in charts (Fig. 8) are shown in Fig. 9. The first 4 molecules have a

large difference between the ZINDO and TDDFT results (Figs. 9(a),(b) and practically their

spectra do not intersect. Therefore, initial IC values for these spectra are close to 0. The other

4 molecules have a non-trivial form of TDDFT (see Fig. 9(c)) or ZINDO (Fig. 9(d)) spectra.

For the first two molecules (A and B) algorithm significantly improve the results of ZINDO and

shift them closer to the TDDFT spectra (see Fig. 9(a),(b)). For the other two(G and H), as one

can see, algorithm do not improve (9(c)) or make the result worse at all (9(d)). The obtained

results allow to see the limitation of this algorithm.

4. Discrete spectra

The approach that we used in previous chapter does not separate the intensity and energy values

of single transitions. As a result, the corrections to the intensities are not very precise (Fig. 6(a)),

and the method relies on a high linear correlation of the energy values. In order to bypass this

problem, we propose a method that allows the energy-intensity combination to be replaced by a

vector that display the average intensity of the absorption spectrum at ranged energy intervals.

The scheme of building a training sample is shown in Fig. 10. For all molecules in the training

sample of the previous method, absorption spectra are constructed as follows: For each line

in transition with corresponding intensity we construct enveloping Gaussian line with σ = 0.4,

after that we sum all curves and normalize them. To create the input vector, we divide the

6 Magnetic Resonance in Solids. Electronic Journal. 2020, Vol. 22, No 1, 20102 (11 pp.)
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Figure 9. Comparison of absorption spectra of different molecules. There are three spectra on each

panel: the calculated using TDDFT (black dash-dotted line), calculated using ZINDO (blue

dashed line), calibrated using RF (solid red line). The spectra constructed with σ = 0.4 eV.

The values of intensities are normalized to 1. On each graph, there is an alphabetic code by

which one can see the value of IC and CC errors in Fig. 8.

Figure 10. Illustration of the algorithm using a discrete spectra. Energy transitions and intensities are

used to build up the envelope of the spectrum, after which the graph is averaged at ranged

energy intervals. Each spectrum obtained from ZINDO and TDDFT values becomes the X

and Y vectors for the training dataset, respectively.

obtained spectrum into energy intervals, and the calculate average intensity for each interval.

We select the energy intervals from 2.8 to 16 eV by the following rule: at the range from 2.8 to

13.6 eV the width is 0.4 eV, from 13.6 to 16 eV the width is 0.8 eV. As a result of this approach,

the length of the input vector becomes 30. In this case, along with the already known IC error,

one can use to estimations the mean square error (MSE), which is always good for comparing

vectors. Figs. 11 and 12 show, that the algorithm does not lead to significant improvements.

The exception is the case (shown in Fig. 12(a)), where the large difference between the spectra

of aziridine is corrected successfully.
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Figure 11. 1− IC error and MSE. Both assessment methods give approximately the same results. There

are only small differences in the case of C and D molecules.

Figure 12. Illustration of the the discrete spectra algorithm results on the example of the same molecules

as in the previous case (Fig. 9). Discrete spectra representations are placed one above the

other for easy comparison. Colors: blue is ZINDO, black is TDDFT, red is RF.

5. Conclusions

In our paper, we managed to show that a relatively small set of training data based on a

various of molecules, with a fairly general selection of parameters, can provide better results in

the calculation of optical transitions. We assume that ZINDO has a systematic error when it

chooses the molecular orbitals that make up the transition. It is shown that our approach is

being able to adjust inaccuracies of ZINDO significantly in some cases, and at least slightly fix

in other cases. We suggested two different ways to calibrate the spectra. On our dataset, the

transition recalculation method showed a smaller error compared to the discrete spectra-based

method.
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Appendix

Figure 13. Two - dimensional and perspective drawing of the molecules used in the training dataset.

There is a name under each compound. There are 81 compounds. This is drawn using [36,37].
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