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An effective operator of the interaction of the orbital moment of d-electrons with the magnetic

field is derived by combining the method of secondary quantization with the technique of irre-

ducible tensor operators. It is found that in addition to renormalization of the matrix elements

of the total orbital momentum L there are new terms in the Hamiltonian of the interaction

with the magnetic field. The effects are numerically calculated by the example of the ground

term of Fe2+ ions in Fe2Mo2O8. Additional magnetic dipole transitions with ∆M = ±3 and

∆M = ±2 are allowed when the magnetic field is directed along the c-axis of the crystal and in

the perpendicular orientation, respectively.

PACS: 71.70.Ch, 75.10.Dg, 76.30.Fc, 71.70.Ej.

Keywords: paramagnetic centers, orbital moment, covalency effects

1. Introduction

A number of works have been devoted to the study of the effect of exchange-covalent bonds on

the orbital moment of d electrons. In magnetic resonance, the effect is detected by the change in

the magnetic moment. The method of molecular orbitals [1] is usually used in the interpretation

of experimental data. The effect of these bonds is reduced to the reduction of matrix elements

from the interaction operator of the orbital momentum with the external magnetic field, or,

in other words, to the change in the components of the g-tensor for the ground state of the

paramagnetic ion. Ions with orbitally nondegenerate states are usually chosen as objects of

study.

In this work, the expressions for renormalization of the orbital momentum operator are de-

rived. These expressions are applicable for arbitrary states of magnetic ions and require no

preliminary determination of molecular orbitals. The problem is solved by the method of su-

perposition of configurations. The fragment of a structure consisting of a magnetic ion and

nearest diamagnetic ions (ligands) 3dnL(2p52s2) is considered as the ground configuration. Ex-

cited states, in which electrons from the outer shells of ligands are transferred to the unfilled

d shell, form configurations with charge transfer 3dn+1L(2p5), 3dn+1L(2p62s1). The effect of

overlapping electronic orbitals of the magnetic ion and ligands within the ground configuration

taken into account is the same as in the generalized Heitler-London method [2] and is qualified

as exchange. The effect of the admixture of states with charge transfer to the states of the

ground configuration, the same as in the method of molecular orbitals, is called the covalency

effect. Keeping in mind both exchange and the covalency effects, one may talk about the effect

of exchange-covalent bonds of the orbital moment of paramagnetic centers.

†This paper is dedicated to Professor Boris I. Kochelaev on the occasion of his 90th birthday.
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2. Derivation of the effective operator

In the secondary quantization approach developed in [2–4], an arbitrary one-particle operator

for a metal-ligand pair taking into account virtual electron transfer processes is written as

Feff =
1

2

∑
a†ηaη′

{
⟨η|f |η′⟩ − 2⟨η|f |ρ⟩λρη′ + ληκ⟨κ|f |ρ⟩λρη′ + ⟨η|f |ξ⟩[SξρSρη′ − γξργρη′ ]

}
+h.c.

(1)

where the sets of quantum numbers η, ξ refer to the 3d electron, and the sets of the quantum

number ρ refer to the 2p and 2s electrons of oxygen, Sηκ are overlap integrals, γηρ are covalency

parameters that take into account virtual transfer processes of 2p and 2s electrons from oxygen

to the 3d shell of the magnetic ion.

In this work we consider the following operator f

f = µBLH = µB

∑
k

(−1)q l(1)q H
(1)
−q , (2)

where l
(1)
q and H

(1)
−q denote spherical components of the orbital momentum operator and the

external magnetic field, respectively. Since the operator f is independent of spin variables, we

replace pairs of secondary quantization operators in Eq.(1) by combinations of components of

irreducible tensor operators [5]:

a†lmalm′ =
∑
k,q

(2k + 1)(−1)l−m

(
l k l

−m q m′

)
U (k)
q . (3)

The reduced matrix elements of one-electron operators u
(k)
q are assumed to be unity, i.e.,

⟨lm|u(k)q |lm′⟩ = (−1)l−m

(
l k l

−m q m′

)
. (4)

Substituting Eq.(3) into Eq.(1), we obtain

Feff = µB

∑
k,q

(−1)q(2k + 1)⟨m|[l(1)q ]eff |m′⟩(−1)l−m

(
l k l

−m q m′

)
U (k)
q H

(1)
−q . (5)

Here we introduce the notation

⟨m|[l(1)q ]eff |m′⟩ = ⟨m|l(1)q |m′⟩ − ⟨m|l(1)q |ρ⟩λρm′ − λmρ⟨ρ|l(1)q |m′⟩+ λmκ⟨κ|l(1)q |ρ⟩λρm′

+
1

2
⟨m|l(1)q |ξ⟩[SξρSρm′ − γςργρm′ ] +

1

2
[SmρSρξ − γηργρξ]⟨ξ|l(1)q |m′⟩.

(6)

The matrix elements in Eq.(6) are most easily calculated when the local coordinate axes on

the metal ion and on the ligand are chosen to be parallel. The z-axes are directed along the

metal-ligand pair from the metal ion to the ligand. The nonzero matrix elements in the basis of

d-electron states are given in Table 1.

Contributions to matrix elements due to overlap and covalency effects from operators l
(1)
1 =

− 1√
2
(lx+ ily), l

(1)
0 = lz, l

(1)
−1 = 1√

2
(lx− ily) are denoted by letters k12, k01, and k12 using row and

column subscripts:

k01 = −1

2
(λ2

σ + λ2
π + λ2

s) +
1√
3
(λσλπ + λπRpsλs), k12 = −λ2

π

2
, k11 = −λ2

π. (7)
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Table 1. Matrix elements ⟨m|[l(1)q ]eff |m′⟩ in the basis of d-electron states

m/m′ 2 1 0 −1 −2

2 2 −
√
2(1 + k12)

1
√
2(1 + k12) 1 + k11 −

√
3(1 + k01)

0
√
3(1 + k01) 0 −

√
3(1 + k01)

−1
√
3(1 + k01) −1− k11 −

√
2(1 + k12)

−2
√
2(1 + k12) −2

In Eqs.(7), standard notations are used for the overlap integrals [1]:

Sσ = ⟨3d0|2p0⟩, Sπ = ⟨3d1|2p1⟩ = ⟨3d− 1|2p− 1⟩, Ss = ⟨3d0|2ps⟩. (8)

Similar notations are adopted for the covalence parameters γσ, γπ, and γs. The integral on the

ligand wave functions:

Rps = − R√
2

(
2p1

∣∣∣∣ ∂∂x + i
∂

∂y

∣∣∣∣ 2s) . (9)

is similar to that in the method of molecular orbitals, R is the metal-ligand distance. The value

Rps we calculated at R = 2 Å on the wave functions of O2− from Tables [6] is −1.425, which is

somewhat less than the value −1.6 obtained in [7] for the Ni2+-F− pair, which is explained by a

more diffuse distribution of the electron density of the 2p and 2s electrons near the O2− nucleus.

To derive the energy operator for the interaction of the d-ion surrounded by several ligands

with a magnetic field, we first use the formula:

H
(1)
−q U

(k)
q =

∑
k,q

(−1)1−k
√
(2p+ 1)

(
1 k p

−q q 0

){
H(1)U (k)

}(p)

0
. (10)

Substituting Eq. (10) into Eq. (5), we obtain the energy operator

Feff = µB

∑
p,q

l̃(k)(−1)1−k
√

(2p+ 1)

(
1 k p

−q q 0

){
H(1)U (k)

}(p)

0
, (11)

where

l̃(k)(Rb) =
∑
m,m′

(2k + 1)(−1)q⟨m|[l(1)q ]eff |m′⟩(−1)l−m

(
l k l

−m q m′

)
. (12)

The subscript b is introduced to denote the position of the ligand, which is separated from the

metal ion by a distance Rb. If we consider l = 2, k can be 1 and 3.

Using Eq. (12), one gets the following expressions for internal parameters for a selected metal-

ligand pair

l̃
(1)
1 (Rb) = l̃

(1)
−1(Rb) = −

√
6

5
(5 + 3k01 + 2k12), l̃

(1)
0 (Rb) =

√
6

5
(5 + k11),

l̃
(3)
1 (Rb) = l̃

(3)
−1(Rb) = 2

√
21

5
(k01 − k12), l̃

(3)
0 (Rb) = −4

√
7

10
k11.

(13)

In the right-hand side of Eq. (11), we note invariant combinations of k12, k01, and k11 with

respect to rotations around the axis of the metal–ligand pair

l(1k)p(Rb) =
∑
q

l̃(k)q (−1)1−k
√

(2p+ 1)

(
1 k p

−q q 0

)
. (14)
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In our case, these combinations are written as

l(11)0 = −
√
90−

√
2

5
(k11 + 4k12 + 6k01), l(11)2 =

2√
5
(k11 − 2k12 − 3k01),

l(13)2 =
2
√
6√
5
(k11 − 2k12 + 2k01), l(13)4 =

4√
10

(−2k11 − 3k12 + 3k01).

(15)

The equation (11) at p = 0 describes the interaction of the isotropic (spherically symmetric)

part of the orbital momentum with the magnetic field. It can be seen from Eqs. (13) and (15)

that the exchange-covalent bonding with the ligand is determined by the terms containing k11,

k12, and k01.

The isotropic part of the change in the spherical components of the orbital moment is equal to

the sum over the surrounding ligands and is proportional to L
(1)
q of the proportionality coefficient

given by

δ =
1

15

∑
b

(k11 + 4k12 + 6k01). (16)

Here, the summation index b refers to the surrounding ligands. The total energy operator of the

complex containing the magnetic ion and surrounding ligands is

Feff = µBLH(1 + δ) + µB

∑
b,p ̸=0,t

l(1k)p(Rb)
{
H(1)U (k)

q

}(p)

t
(−1)tC

(p)
−t (ϑbφb), (17)

where C
(p)
−t (ϑbφb) are components of the spherical tensor fixing the direction of metal-ligand

pairs with respect to the crystallographic coordinate system. Equation (17) is directly used in

the basis of many-electron wave functions |dnSLMSML⟩. The construction of molecular orbitals

is not required. In Eq. (17), a simple summation over the positions of the surrounding ligands

is carried out, the same as in the crystal field theory. The symmetry of the position of the

magnetic ion can be arbitrary.

We note that during calculations of matrix elements of the interaction operator of the orbital

momentum with the magnetic field, it is convenient to rewrite it in the form

Feff = µBLH(1 + δ) + µB

∑
b,p ̸=0,t

L
(1k)p
t

{
H(1)U (k)

q

}(p)

t
, (18)

where the quantities

L
(1k)p
t =

∑
b

l(1k)p(Rb)(−1)tC
(p)
−t (ϑbφb) (19)

are characteristics of the complex (a paramagnetic ion+ligands). The sum 1 + k + p can only

be even, as it should be for the Hermite conjugate operator. In the case of d electrons, k takes

the values of 1 and 3. The quantities L
(1k)p
t at p = 2 and 4 correspond to the anisotropic terms

of the effective orbital momentum. They have not been discussed earlier in the literature.

3. Numerical estimates for Fe2Mo3O8 and discussion of results

The compound Fe2Mo3O8 is a magnetoelectric with a record high electric polarization [8,9]. Iron

Fe2+ ions occupy tetrahedral and octahedral positions in equal proportions, which are usually

denoted by the letters A and B, respectively [10]. Both positions have trigonal distortions. The

point group symmetry is C3. The subscript t in Eq. (19) takes the values 0 and ±3. For the

4 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24101 (8 pp.)
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choice of coordinate systems as explained in Tables 2 and 3, the imaginary parts of the L
(13)4
3

and L
(13)4
−3 values are zero. Thus, we have the following set of quantities for both positions:

L
(11)2
0 =

∑
b

l(11)0(Rb)C
(2)
0 (ϑbφb), L

(13)2
0 =

∑
b

l(13)2(Rb)C
(2)
0 (ϑbφb),

L
(13)4
0 =

∑
b

l(13)4(Rb)C
(4)
0 (ϑbφb), L

(13)4
3 = −

∑
b

l(13)4(Rb)C
(4)
−3 (ϑbφb).

(20)

Table 2. Coordinates of nearest oxygens (in Å) near Fe(A) positions in the Cartesian coordinate sys-

tem [11,12].

Nearest neighbors X(O-Fe) Y(O-Fe) Z(O-Fe) R(Fe-O)

O1 −1.7872 0 −0.9068 2.0041

O2 0.8936 1.5478 −0.9068 2.0041

O3 0.8936 −1.5478 −0.9068 2.0041

O4 0 0 1.9456 1.9456

Table 3. Coordinates of nearest oxygens around Fe(B) (in Å)

Nearest neighbors X(O-Fe) Y(O-Fe) Z(O-Fe) R(Fe-O)

O1 1.3398 −0.7735 −1.5056 2.1588

O2 0 1.5471 −1.5056 2.1588

O3 −1.3398 −0.7735 −1.5056 2.1588

O4 −1.4452 0.8344 1.2238 2.0694

O5 0 −1.6688 1.2238 2.0694

O6 1.4452 0.8344 1.2238 2.0694

Table 4. Overlap integrals S and covalency parameters γ and k01, k12, k11 for Fe2Mo3O8

R (in Å) 1.9456 2.0041 2.0694 2.1588

γ3d0,2p0 −0.24 −0.23 −0.21 −0.19

γ3d1,2p1 0.23 0.18 0.16 0.14

γ3d0,2s −0.03 −0.03 −0.02 −0.02

S3d0,2p0 −0.0721 −0.0679 −0.0633 −0.0573

S3d1,2p1 0.0576 0.0522 0.0470 0.0408

S3d0,2s −0.0770 −0.0697 −0.0622 −0.0534

k01 −0.162 −0.140 −0.100 −0.080

k12 −0.043 −0.036 −0.029 −0.022

k11 −0.007 −0.006 −0.004 −0.003

The Hartree-Fock wave functions Fe2+(3d) and O2−(2p, 2s) were taken from [6]. To estimate

γ at R = 1.988 Å, we used their values determined for Ni-O and Cr-O pairs in oxides by

magnetic resonance methods [13,14], and their variation as a function of R was calculated under

the assumption that γ(R) ≈ S(R). To calculate the overlap integrals as functions of R, the

Gaussian-type decompositions of radial wave functions on orbitals (GTO) were used. These

decompositions are given in Ref. [15]. We note that Eq. (17) can be rewritten as follows:

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24101 (8 pp.) 5
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Table 5. Calculated parameters L
(1k)p
t for sites Fe(A) and Fe(B)

site L
(11)2
0 L

(13)2
0 L

(13)4
0 L

(13)4
3

A 0.256 −0.265 −0.194 −0.544

B 0.196 −0.204 0.576 0.599

Feff = µBLH(1 + δ) + µB

∑
k,p̸=0,q

(−1)q T (kp)1
q H

(1)
−q , (21)

where

T (kp)1
q =

√
(2p+ 1)

∑
t,q′

(−1)1−k+q′

(
1 k p

q −q′ t

)
L
(1k)p
t U

(k)
q′ . (22)

In this form, Eq. (21) may be conveniently compared with Eq. (2). It is a generalization of

Eq. (2) to take into account exchange-covalent effects in paramagnetic centers. For both types

of fragments, tetrahedral (FeO4) and octahedral (FeO6) ones, the operator (21) of the effective

magnetic field interaction is written as in µB:

Feff = LH(1 + δ)

−

{
−
√

2

3
L
(11)2
0 U

(1)
0 +

[√
3

7
L
(13)2
0 −

√
4

7
L
(13)4
0

]
U

(3)
0 +

1

2

[
L
(13)4
3 U

(3)
3 + L

(13)4
−3 U (3

−3

]}
Hz

+

√
1

6
L
(11)2
0

(
U

(1)
−1H

(1)
1 + U

(1)
1 H

(1)
−1

)
+

[√
2

7
L
(13)2
0 +

√
3

14
L
(13)4
0

](
U

(3)
−1H

(1)
1 + U

(3)
1 H

(1)
−1

)
+

√
3

4

(
L
(13)4
3 U

(3)
2 H

(1)
1 + L

(13)4
−3 U

(3)
−2H

(1)
−1

)
.

(23)

It can be seen from Eq. (23) that when the external field is directed along the c-axis of the crystal,

matrix elements with the selection rule ∆M = ±3 appear, and in the case, when the magnetic

field is perpendicular to the c-axis, additional transitions with ∆M = ±2 are implemented. The

matrix elements we calculated according to Eq. (23) are given in Tables 6 and 7. Tables 6 and

Table 6. Calculated matrix elements at p ̸= 0 and q > 0 for Fe(A) (in µB), δ = −0.27.

m/m′ 2 1 0 −1 −2

2 −0.080Hz 0.021H
(1)
−1 −0.126H

(1)
1 0.073Hz 0

1 −0.032Hz −0.072H
(1)
−1 0 0.073Hz

0 0 −0.072H
(1)
−1 0.126H

(1)
1

−1 0.032Hz 0.021H
(1)
−1

−2 0.080Hz

7 show that the order of magnitude of the change in the orbital moment is the same as that in

the method of molecular orbitals. It can also be seen that the effect of exchange-covalent bonds

is not reduced to simple renormalization of the matrix elements of the orbital moment. There

are additional matrix elements with selection rules ∆M = ±2 and ∆M = ±3. Moreover, these

new matrix elements are on the same order of magnitude as those that are usually taken into

account by the orbital momentum reduction.

6 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24101 (8 pp.)
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Table 7. Calculated matrix elements at p ̸= 0 and q > 0 for Fe(B) (in µB), δ = −0.26.

m/m′ 2 1 0 −1 −2

2 −0.126Hz −0.053H
(1)
−1 0.139H

(1)
1 −0.080Hz 0

1 0.107Hz 0.001H
(1)
−1 0 −0.080Hz

0 0 0.001H
(1)
−1 −0.139H

(1)
1

−1 −0.107Hz −0.053H
(1)
−1

−2 0.126Hz

4. Concluding remarks

Operators (17) and (21) are applicable for arbitrary symmetries of paramagnetic complexes and

allow the description of the effects of exchange-covalent coupling with ligands of many-electron

ions without construction of Slater determinants from molecular orbitals. It is found that in

addition to renormalization of the matrix elements of the total orbital momentum L, there are

new terms in the Hamiltonian of the interaction with the magnetic field, which have not been

discussed in the literature. These new terms have other selection rules of matrix elements. They

make the magnetic-dipole transitions with selection rules ∆M = ±2 and ∆M = ±3 possible. In

paramagnetic centers without inverse symmetry such transitions may be important in the study

of the effects caused by interference of magnetic and induced electric dipole transitions. Such

interference underlies the phenomena of irreversibility in the light passing through the plates

and is of interest for applications, such as calculations of the efficiency of optical diodes. We

note that the expressions we obtained are also applicable to compounds with unfilled 5d and

6d shells. Exchange-covalent bonds of 5d and 6d electrons with their surrounding ligands are

expected to be especially strong.
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