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A mini auto-review of relaxation function theory with paramagnon excitations for doped S = 1/2

two-dimensional Heisenberg antiferromagnetic system is given in view of magnetic response of

high-Tc copper oxide superconductors as obtained by nuclear magnetic resonance (NMR) and

resonant inelastic X-ray scattering (RIXS). It is shown that RIXS data analysis is affected by

approximations made for dynamic spin susceptibility and thus depends on paramagnon damping.

The results of the theory give fair agreement without especially adjusted parameters to RIXS

data for Y-Ba-Cu-O and Nd(La)-Ba(Sr)-Cu-O family compounds.

PACS: 74.72.-h, 75.40.Gb

Keywords: dynamic spin susceptibility, NMR, RIXS

1. Introduction

The main research of magnetic properties of copper oxide high-temperature superconductors

(high-Tc) has been focused on evolution of spin excitations from antiferromagnetic (AF) state

to superconducting (SC) state with doping [1–4]. In the carrier free systems the elementary

excitations in high-Tc’s are spin waves (magnons in the quasiparticle language) [5–7]. This

concept has been thoroughly investigated in the past [8] and now is widely used for description

of two-dimensional (2D) (anti-)ferromagnets. It is therefore tempting to consider the doped 2D

Heisenberg AF (2DHAF) systems in terms of paramagnon excitations, a notation used for spin

fluctuations in representation of damped spin waves in the non-ordered, paramagnetic phase or,

if we want to be cautious, paramagnon-like excitations. In the optimally doped (maximum Tc)

high-Tc’s the motion of charge carriers is known to take place in the presence of strong AF

fluctuations [9, 10] and spin waves in 2DHAF systems persist even without long range order

in the paramagnetic state [5–8, 11]. The concept of damped spin waves, paramagnons in the

quasiparticle language, is therefore appears to be the clue in explaining the spin dynamics

in normal, non superconducting, state of plane copper oxide high-Tc’s [1, 12, 13] and shall be

accounted for in the present studies down to the superconducting state.

In this mini auto-review we will show that description of recent RIXS experiments together

with nuclear spin-lattice relaxation data as obtained by nuclear magnetic/quadrupole resonance

(NMR/NQR) can be obtained within the relaxation function theory and without parameters

especially adjusted to the RIXS data [14,15].

Experimental research of doped cuprates has been focused mainly on low energy elementary

excitations in narrow range of wave vectors of the Brillouin zone because of technique limitations.

Recent Resonant Inelastc X-ray Scattering (RIXS) experiments [13,16] gave information about

the imaginary part of dynamic spin susceptibility along the [100] direction and are complemen-

tary to neutron scattering (NS) studies that are focused mainly on the wave vectors around the

AF wave vector Q = (π, π). The general theory of RIXS by collective magnetic excitations is

†This paper is dedicated to Professor Boris I. Kochelaev on the occasion of his 90th birthday.
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given by Haverkort [17].

For underdoped YBa2Cu3O6.35 with Tc = 18K, where the magnetic excitations are very

similar to that of carrier free 2DHAF systems, evidence for spin waves was reliably obtained

from NS studies [18]. In the nearly optimally doped YBa2Cu3O6.85 NS studies showed that AF

spin excitations of copper oxide high-Tc emanate in the overall doping range from those of the

parent insulator, i.e., the spin waves [19].

In the majority of superconducting cuprates RIXS data confirmed the existence of para-

magnon excitations [13, 16] and properties that correspond to the presence of damped spin

excitations (paramagnons) with dispersion that is close to magnons in cuprates without charge

carriers – AF insulators. For all studied systems the experimental spectra covered a wide

range of compounds and doping levels: AF carrier-free Nd1.2Ba1.8Cu3O6, heavily underdoped

Nd1.2Ba1.8Cu3O7 and YBa2Cu3O6.6 (with Tc = 65K and 61K, respectively), underdoped

YBa2Cu4O8 (Tc = 80K) and lightly overdoped YBa2Cu3O7 (Tc = 90K), and La2−xSrxCuO4

from underdoped, x = 0, to heavily overdoped x = 0.4 regimes, that proves the existence of

damped paramagnons, that is, clearly well-defined magnetic excitations of cuprates with various

doping levels. In [20] we showed that the so called “resonance peak” feature from the under-

doped up to the optimally doped regime of high-Tc copper oxides at low temperatures seen by

NS is caused to a large degree by the paramagnon-like properties and explanation of ω/T scaling

of the averaged over the Brillouin zone imaginary part of dynamic spin susceptibility in lightly

doped copper oxide high-Tc compounds does not require the concept of putative quantum crit-

ical point. The approximations we used were within the Markovian approximation and “. . . by

itself the Markovian situation can be valid even in the absence of any picture of the system in

terms of well-defined excitations” [11].

2. Basic relations

The t− J model Hamiltonian [21,22] known as the minimal model for the electronic properties

of high-Tc cuprates

Ht−J =
∑
i,j,σ

tijX
σ0
i X0σ

j + J
∑
i>j

(SiSj −
1

4
ninj), (1)

is written in terms of the Hubbard electron creation (annihilation) operators Xσ0
i (X0σ

i ) with

spin σ at site i and Si are spin-1/2 operators. The hopping integral tij = t = J/0.2 between

the nearest neighbors (NN) describes the motion of electrons causing a change in their spins

and J = 0.12 eV is the NN AF coupling constant. The spin and density operators are defined

as follows: Sσ
i = Xσσ̃

i , Sz
i = (1/2)

∑
σ σX

σσ
i , ni =

∑
σ X

σσ
i , (σ = −σ̃), with the standard

normalization X00
i +X++

i +X−−
i = 1.

We will formulate our study of spin fluctuations following Mori [23], who showed it’s ef-

ficiency for both the classical (and essential equivalence to Brownian motion) and quantum

(e.g., Heisenberg systems of arbitrary dimension) many body systems [11]. This formulation in

terms of relaxation functions is related to mean field Green’s function technique [11]. The time

evolution of a dynamical variable Sz
k(τ), say, is given by the equation of motion,

Ṡz
k(τ) ≡

dSz
k(τ)

dτ
= iLSz

k(τ) → [Ht−J , S
z
k(τ)], (2)

where the Liouville superoperator L in the quantal case represents the commutator with the

Hamiltonian. The projection of the vector Sz
k(τ) onto the Sz

k ≡ Sz
k(τ = 0) axis, P0S

z
k(τ) =

R(k, τ)Sz
k, defines the linear projection Hermitian operator P0. The operator Sz

k(τ) may be

2 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24102 (11 pp.)
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separated into the projective and vertical components Sz
k(τ) = R(k, τ)Sz

k + (1−P0)S
z
k(τ) with

respect to the Sz
k axis, where

R(k, τ) ≡ (Sz
k(τ), (S

z
−k)

∗)(Sz
k, (S

z
−k)

∗)−1

is the relaxation function in the inner-product bracket notation:

(Sz
k(τ), (S

z
−k)

∗) ≡ kBT

∫ 1/kBT

0
dϱ ⟨eϱHSz

k(τ)e
−ϱH(Sz

−k)
∗⟩,

and the angular brackets denote the thermal average.

The Laplace transform of the relaxation function may be presented in a form of continued

fraction, for which Lovesey and Meserve [11,24] used a three pole approximation,

RL(k, s) =

∫ ∞

0
dτ e−sτR(k, τ) ≈ 1/{s+∆2

1k/[s+∆2
2k/(s+ 1/τk)]},

with a cutoff characteristic time τk =
√
2/(π∆2

2k), by arguing that Sz
k(τ) fluctuations are

weakly affected by the higher order random forces. For the relaxation shape function F(k, ω) =

Re[RL(k, iω)]/π, this gives

F(k, ω) =
1

π

τk∆
2
1k∆

2
2k

[ωτk(ω2 −∆2
1k −∆2

2k)]
2 + (ω2 −∆2

1k)
2
, (3)

where ∆2
1k and ∆2

2k are related to the frequency moments,

⟨ωn
k⟩ =

∫ ∞

−∞
dω ωnF(k, ω) = (1/in) [dnR(k, τ)/dτn]τ=0 ,

of R(k, τ) as ∆2
1k =

〈
ω2
k

〉
, ∆2

2k =
〈
ω4
k

〉
/
〈
ω2
k

〉
−

〈
ω2
k

〉
for τ > τk. Note that F(k, ω) is real,

normalized to unity
∫∞
−∞ dωF(k, ω) = 1 and is even in both k and ω. The expression for the

second moment, 〈
ω2
k

〉
= i⟨[Ṡz

k, S
z
−k]⟩/χ(k) = −(8Jc1 − 4teffT1)(1− γk)/χ(k),

is compact, while
〈
ω4
k

〉
= i⟨[S̈z

k, Ṡ
z
−k]⟩/χ(k) is cumbersome and is not reproduced here (see

Ref. [25] for details).

Within the t − J model the static spin susceptibility χ(k) in the overall temperature and

doping range is given by [26]

χ(k) =
4|c1|

Jg−(g+ + γk)
, (4)

and has the same structure as in the isotropic spin-wave theory [27]. The correlation length ξ is

related to the parameter g+ via the expression ξ/a = 1/(2
√
g+ − 1), where a = 3.8 Å is a lattice

unit. The spin-spin correlation function between NN is defined as

c1 =
1

4

∑
ρ

⟨Sz
jS

z
j+ρ⟩,

the transfer amplitude between the NN is given by:

T1 ≡ −1

4

∑
ρ

〈
Xσ0

i X0σ
i+ρ

〉
= p

∑
k

γkf
h
k ,
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where

γk =
1

4

∑
ρ

exp(ikρ) =
1

2
(cos kxa+ cos kya),

the index ρ runs over NN, and fh
k = [exp(−Ek+µ)/kBT+1]−1 is the Fermi function of holes. The

number of extra holes, due to doping, δ, per one plane Cu2+, can be identified with the Sr content

x in La2−xSrxCuO4. The chemical potential µ is related to δ by δ = p
∑

k f
h
k , where p = (1+δ)/2.

The excitation spectrum of holes is given by Ek = 4 teff γk, where the hoppings, t, are affected by

electronic and AF spin-spin correlations c1, resulting in effective values [21,22,28,29], for which

we set teff = δJ/0.2 in order to match the insulator-metal transition. This renormalization of

hopping may be easily understood because a hole when moving through the lattice retains its

spin orientation. The temperature and doping dependence of the parameters of the theory, g−
and c1, have been calculated selfconsistently.

For low temperature behavior we use the expression, resulting in effective correlation length

ξeff , given by [25,28,30]

ξ−1
eff = ξ−1

0 + ξ−1. (5)

Here, ξ is affected by doped holes, in contrast with the Keimer et al. [30] empirical equation,

where ξ is given by the Hasenfratz-Niedermayer formula and there was no influence of the hole

subsystem on ξ. Thus from now on we replace ξ by ξeff . For doped systems we use the explicit

expression [26] for ξ which is much more complicated compared with simple relation

ξ/a ≃ (J
√
g−/kBT ) exp(2πρS/kBT ),

valid for carrier free or lightly doped systems [26]. In the best fit of ξeff to experimental data [30,

31] the relation ξ0 = a/nξx is most suited [20, 25] which one may attribute to stripe picture,

where nξ = 2 for x ≤ 0.05 and nξ = 1 near optimal (x ≈ 0.15) doping. The results of the

calculations are summarized in Table 1.

Table 1. The calculated at T = 300K AF spin-spin correlation function c1, the parameter g−, the spin

stiffness constant ρS . All these quantities have weak temperature dependence. The last column

shows the value of AF correlation length used in the limit T → 0

x c1 g− 2πρS/J ξ0

0 −0.1152 4.1448 0.38 -

0.04 −0.1055 3.913 0.3 1/(2δ)

0.115 −0.0758 3.252 0.2 1/δ

0.15 −0.0617 2.947 0.13 1/δ

The temperature and doping dependence of the paramagnon excitations may be studied

further since the relaxation function can be understood within the spin-wave framework [11].

The relaxation shape function (3) in the undamped regime is directly related to the imaginary

part of dynamic spin susceptibility χ′′(k, ω) as [11],

χ′′(k, ω) = ωχ(k)F (k, ω). (6)

Alternatively, in the damped regime, the dispersion of paramagnon excitations, renormalized

by interactions, is given by the relaxation shape function [11],

ωsw
k = 2

∫ ∞

0
dω ωF(k, ω), (7)

4 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24102 (11 pp.)
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where the integration over ω in (7) has been performed analytically and exactly and the damping

of paramagnon excitations is given by

Γk =
√
⟨ω2

k⟩ − (ωsw
k )2. (8)

3. Results and discussion

Having established the paramagnon dispersion and damping we now proceed with calculations

of imaginary part of the dynamic spin susceptibility.

The nuclear spin-lattice relaxation rate 1/T1 is given by

α(1/T1) =
2kBT

ω0

α∑
k

F (k)2χ′′(k, ω0), (9)

where ω0 ≪ T, J is the measuring NMR/NQR frequency. The quantization axis of the electric

field gradient coincides with the crystal axis c which is perpendicular to CuO2 planes defined by

a and b. The wave vector dependent hyperfine formfactor for plane 63Cu sites [32, 33] is given

by, 63F (k)2 = (Aab + 4γkB)2, where Aab = 1.7 · 10−7 eV and B = (1 + 4x) · 3.8 · 10−7 eV are

the Cu on-site and transferred hyperfine couplings, respectively. The relation for B is used to

match the weak changes with Sr doping [36].

Figure 1. The calculated temperature dependencies of plane copper nuclear spin-lattice relaxation rate
63(1/T1) = 2W in La2−xSrxCuO4 (data from [34]) for x = 0.0, x = 0.04 and x = 0.15 in the

approximation for undamped paramagnon-like excitaions, Eq.(6) (dashed lines), and by solid

lines for χ′′
L1(q, ω) with damping (Lorentzian form 1, Eq.(10)) [15].

Figure 1 shows the temperature dependencies of plane copper nuclear spin-lattice relaxation

rate, 63(1/T1). Equations (4)-(6), (9), and Figure 1 show that the temperature dependence of
63(1/T1) is mainly governed by the temperature dependence of the AF correlation length and

by the factor kBT . At low T , where ξeff ≃ const, the plane copper 63(1/T1) ∝ T , as it should.

At high T , the correlation length shows weak doping dependence and behaves similarly to that

of carrier free La2CuO4 and therefore 63(1/T1) of doped samples behaves similarly to that of

La2CuO4. Thus our results suggest that the “pseudogap” effect seen by NMR in the high-Tc

cuprates is hidden in the correlation length that affects the observable quantities, and, generally,

is in agreement with the conclusion based on the nearly AF Fermi liquid concept [35,36] about

the leading role of the correlation length in temperature and doping dependence of 1/T1.

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24102 (11 pp.) 5
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Figure 2. Experimental data for dispersion of paramagnon excitations along the (0,0)-(π,0) axis as

obtained by RIXS are from [13]. Dashed and dash-dotted lines show calculations of dispersion

of paramagnon-like excitations with damping following Eq. 10 and Eq. 12, respectively. Solid

lines show calculations of paramagnon dispersion given by Eq. 7. All calculated values for

x = 0 and x = 0.15 are nearly the same [14].

Resonant inelastic X-ray scattering measures the maximum of imaginary part of the dynamic

spin susceptibility at a certain wave vector. As we will show below, the results of RIXS data

analysis depend significantly on the specific analytical expression for imaginary part of the

dynamic spin susceptibility. Here we will consider three (a,b,c) somewhat similar approaches.

This result implies that we have to be cautious when interpreting the RIXS data (see Figure 2)

as a direct measurement of (para-)magnon dispersion. We note that the calculations are carried

out without any fitting parameters to the RIXS data.

a) Lorentzian form 1 of the imaginary part of the dynamic spin susceptibility [37],

χ′′
L1(k, ω) =

χ(k)ωΓk

(ω − ωsw
k )2 + Γ2

k

+
χ(k)ωΓk

(ω + ωsw
k )2 + Γ2

k

, (10)

is asymmetric in frequency ω, at it should. From the frequency dependence it follows that

(10) has maximum with the following condition,

Ωk = ωRes =
√

(ωsw
k )2 + Γ2

k, (11)

implying that χ′′
L1(k, ω) maximum value as seen by RIXS is strongly affected by the damp-

ing Γk.

b) Lorentzian form 2 of the imaginary part of the dynamic spin susceptibility has a somewhat

similar structure [13],

χ′′
AL(k, ω) ∝

Γk

(ω − ωsw
k )2 + Γ2

k

− Γk

(ω + ωsw
k )2 + Γ2

k

, (12)

which is asymmetric in frequency also, and its frequency ω dependence dictates that (12)

has maximum at

Ωk = ωAL,Res =
1√
3

√
(ωsw

k )2 − Γ2
k + 2

√
(ωsw

k )4 + Γ4
k + (ωsw

k )2Γ2
k > ωsw

k , (13)

6 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24102 (11 pp.)
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that is rather different from the result with Lorentzian form 1 (10). In the limit of small

damping Γk < ωsw
k this gives

ωAL,Res ≈ ωsw
k

[
1 +

Γ4
k

6(ωsw
k )4

]
. (14)

Figure 2 shows that result with Lorentzian form 2 (12) in our case is indeed very close to

bare paramagnon excitations dispersion.

c) A simpler approach for dynamic spin susceptibility, i.e.,

χ(k, ω) = ηk/[(ω
sw
k )2 − ω2 + iΓkω] (15)

gives the maximum at

ωS,Res ≈ ωsw
k

[
1−

Γ2
k

8(ωsw
k )2

]
(16)

for Γk < ωsw
k . This equation for susceptibility maximum condition gives the correction to

ωsw
k that has the opposite sign compared with the former cases.

This suggests that the RIXS data analysis is strongly affected by damping of paramagnon ex-

citations. We therefore caution against interpreting the RIXS results as exact measurement

of (para-)magnon dispersion. The result would eventually include the damping and its effect

depends on approximations made when deriving the specific expression for dynamic spin sus-

ceptibility.

Figure 2 shows the dispersion of paramagnon excitations along the line (0,0) - (π,0). Exper-

imental data for dispersion of paramagnon excitations in antiferromagnetic Nd1.2Ba1.8Cu3O6,

underdoped Nd1.2Ba1.8Cu3O7, YBa2Cu3O6.6, YBa2Cu4O8 and YBa2Cu3O7 at T = 15K are

taken from [13]. The results of the calculations (lines) are given for several doping values, des-

ignated by the value of charge carriers concentration, x. Dashed lines - calculation with use

of Lorentzian form 1 for imaginary part of a dynamic spin susceptibility that takes into ac-

count thermal damping of paramagnon excitations (10). Dash-dotted lines show the same for

Lorentzian form 2 (12). The latter result is very close to that for bare paramagnon dispersion,

given by 7 and shown by solid lines.

The wavevector dependence of paramagnon dispersion ωsw
k (Figures 3a, 4a) and damping

Γk (Figures 3b, 4b), respectively, is shown for the cases of pure AF and optimal doping, and

at various temperatures. Both quantities have weak temperature dependence below T < J/2

except for region around values of AF wave vector QAF = (π, π). Both Figures 3a and 4a show

gradual paramagnon softening with doping and temperature.

In our theory we do not assume any putative Quantum Critical Point (QCP) scenario – phase

transition at T = 0 and nearly optimal doping x ≈ 0.15. Earlier this QCP was invented as the

source of “exotic” properties of high-Tc compounds, including the “dome”-like dependence of Tc

in the temperature-doping index phase diagram, and the ω/T scaling, nearly universal behavior

of averaged over the Brillouin zone the imaginary part of dynamic spin susceptibility, in light

doping regime. Our findings are in agreement with conclusion of Ref. [16] about the absence of

sharp changes in the high-energy magnetic fluctuations that might be expected in the presence

of hidden quantum critical point.

Figure 5 shows the temperature dependence of damping ΓQ for paramagnon excitations at

AF wave vector QAF = (π, π) at various doping levels, x. The nearly square-law for ΓQ versus

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24102 (11 pp.) 7
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Figure 3. a) Dispersion ωsw
k and b) damping Γk of paramagnon excitations along a contour (π/2, π/2) –

(π, π) – (π, 0) – (π/2, π/2) – (0,0) – (π, 0) for a pure Heisenberg antiferromagnet, x = 0 [14].

Figure 4. a) Dispersion ωsw
k and b) damping Γk of paramagnon excitations along a contour (π/2, π/2)

– (π, π) – (π,0) – (π/2, π/2) – (0,0) – (π,0) for doping near optimal, x = 0.15 [14].

temperature for pure AF is in qualitative agreement with results of Refs. [38,39]. At low doping,

x ≈ 0.04, the results of the calculations are in agreement with conclusion made in Ref. [40],

that the linear dependence of damping versus temperature is necessary to explain the ω/T

scaling of averaged over the Brillouin zone the imaginary part of dynamic spin susceptibility,

experimentally observed by NS in low doped, 0.02 < x < 0.05 samples. For doping near

optimal, x ≈ 0.15, Figure 5 shows that the damping continues to exhibit the dramatic change

of temperature dependence, ΓQ ∝
√
T .

The half width at half maximum (HWHM) of magnetic excitations is within 200–250meV [13]

8 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24102 (11 pp.)
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Figure 5. Temperature dependence of damping parameter ΓQ for paramagnon(-like) excitations at AF

wave vector Q = (π, π) at various doping levels, x. Solid lines show the results of the calcula-

tions, dashed lines show the result of the fit with ΓQ ∝ T γ with power index γ as shown near

the curves [14].

for numerous cuprates and within 50–200meV [16] for undoped, underdoped and optimally

doped La2−xSrxCuO4 compounds in the region of the wave vectors 0.2 ≤ Q|| ≤ 0.4. The

calculated values of damping versus k in this region Γ ≈ 1.4J ≈ 170meV are in quantitative

agreement with these experimental data.

Our findings are in general agreement also with [17, 41, 42] that support the magnetic exci-

tations scenario for RIXS studies of doped high-Tc copper oxides. The exact diagonalization

and Monte Carlo studies of Jia et al. [42] showed that the magnetic excitations have the same

dispersion as shown experimentally and in the present work. However, their calculations were

performed at T ≈ 1500K that is inaccessible experimentally and is beyond our current interest.

4. Conclusion

In conclusion we showed that the magnetic properties of high-Tc copper oxides in the normal,

nonsuperconducting state as obtained by RIXS, nuclear magnetic resonance and neutron scat-

tering, can be explained in unified form by relaxation function theory. RIXS data analysis is

strongly affected by damping of paramagnon excitations and we therefore caution against inter-

preting the RIXS results as exact measurement of (para-)magnon dispersion since it will depend

on the specific expression for dynamic spin susceptibility. The concept of paramagnon excita-

tions appears to be a natural clue in understanding the normal state of doped high-Tc copper

oxides.
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