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This study establishes precise links between the fractional integral of the RL-type and the averag-

ing technique of a smooth function over 1D-fractal sets. These findings were previously reported

in the works [1], [2]. To draw in the interest of other experts operating in the NMR/EPR zones,

it is helpful to repeat them again. The physical meaning of these acquired formulas is explained

and numerical verifications are performed with the purpose of confirming the analytical results.

Furthermore, results were achieved for a combination of fractal circuits with a discrete set of

fractal dimensions that were generalized. We suppose that these new results help understand

deeper the intimate links between fractals and fractional integrals of different types, especially

in applications of the fractional operators in complex systems.

PACS: 02.50.-r, 02.60.-x, 02.70.Rr, 05.40.Ca.

Keywords: 1D-Fractals, Riemann-Liouville fractional integrals, averaging procedure over 1D Cantor
sets; the generalized self-similar electric circuits

This paper (as mini-review) I decided to devote to the 90-th anniversary

of my first Teacher Boris Ivanovich Kochelaev

Preface

Let me to explain firstly (for a potential reader) why I greatly appreciated to this Big Scientist

in establishing of my scientific carrier? I should remind of some key points that I wrote 5 years

ago because they are really important for me.

When I was the PhD student (1970-1973) I was left by my teacher with the problem alone,

because he was invited to spent his “sabbatical leave” in the USA again. This time was very

difficult from one side and was instructive for me from another side.

After receiving a red diploma from Kazan State University’s Physical Faculty and enrolling

in a PhD program, I felt compelled to demonstrate to myself that I could handle challenging

problems on my own. I worked for two years to find the right expressions for a relaxation

problem in liquid He3,4 combinations. But another researcher from Krasnoyarsk Institute of

Physics reached exactly the same result using Zubarev’s NSO technique, so I was compelled

to examine a different topic when it came to the relaxation processes in paramagnets at low

temperatures. I resolved another issue in a year and earned the required degree in 1974.

These “testimony” years will always stick in my memory, and I would want to thank my

teacher for the “lesson” I learned during that period. These years have given me confidence

that I can work independently and find solutions to the issues I face in life. I currently work at

the Technical University (KNRTU-KAI) where I take part in problem-solving activities related

to engineering. I see them as a fresh challenge that puts my skills and knowledge to the test.

Since my Hirsch index is higher than 30 and my works have had more than 5000 citations, I

may consider myself as a successful scientist (for more information, see http://expertcorps.

ru/science/whoiswho/ci86).
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Fractals and fractional integrals: Are there some. . .

A few remarks regarding the original paper that I would like to make to the interested reader. I

have authored almost 300 publications, and every one of them that has been published is regarded

as my “scientific child”. While some of them were fortunate enough to receive good fortune,

others were temporarily forgotten. I see myself as an “armor” who suggests fresh approaches to

tackle challenging issues that must be “defeated” with the aid of the suggested “new methods”.

Nevertheless, despite my current situation, I continue to work actively in three “hot” areas:

(a) dielectric spectroscopy; (b) fractional calculus and fractals; and (c) the creation of novel

statistical techniques for the extraction of deterministic information from random signals.

The “promising child” (b) is the owner of the original document that is displayed below. It

creates a clear path between temporal fractional integrals of the Riemann-Liouville type and 1D

fractals (as Cantor sets and their generalizations). One of the “hot” problems in the physics

of fractional calculus is still this one. It is my sincere hope that this important research will

also catch the interest of experts in NMR/EPR applications, particularly in the identification

of processes that are represented by fractional integrals/derivatives and are likely now impacted

by the presence of a “noise”.

1. Introduction

The term FDA, which stands for Fractional Derivative and its Application, has now spread

widely. The “hot spot” emerged at the end of the 1980s when numerous researchers from a variety

of application fields realized that the new tool provided by fractional calculus mathematics

could reveal new features and generalize previously studied fractal geometry phenomena. Some

monographs [3–7] and reviews [8,9] that incorporate extensive old and recent historical surveys

and explain the roots of this “hot spot” are recommended for novices. The connection between

fractional calculus and fractals is once again of interest. Papers [10–12] described some novel

approaches (although without a proper physical explanation). The determination of the justified

and correct relationships between the smoothed functions averaged over fractal objects and

fractional operators is one of the fundamental issues in the fractional calculus community that

has not yet been accurately answered. In monograph [13] and paper [1], this problem was

partially solved for the time-dependent functions averaged over Cantor sets, where the influence

of an unknown log-periodic function was taken into consideration. This ultimately allowed for

the interpretation of the fractional integral with the complex-conjugated power-law exponents.

In monograph [13], potential generalizations that could aid in comprehending the function of a

spatial fractional integral as a mathematical operator in place of the operation of averaging the

smoothed functions over fractal objects were also taken into consideration.

However, in order to receive as a generalization, the desired expressions for the gradient,

divergence and curl expressed by means of the fractional operator in the limits of mesoscale

(when the current scale η lies in the interval (λ < η < Λ) determining the limits of a possible

self-similarity) it was necessary to apply the additional averaging procedure over possible places

of location of the fractal object considered. This procedure provides the correct convergence of

the microscopic function f(z) at small (η ≃ λ) and large (η ≃ Λ) scales. However, the primary

mathematical barrier to precisely determining the intended link between the fractal object and

the associated fractional integral is the lack of the 2D- and 3D-Laplace transformations. As a

result, the fundamental issue this paper addresses can be stated as follows: If we wish to carry

out this process without using any approximations, what precise form of the fractional operator

is produced in the outcomes of the smoothed function averaging operation across the specified

fractal set?

2 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24105 (14 pp.)
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We should also highlight the findings from the most recent publication [14], which presents

an original attempt to tie a fractal object – a branching liquid flow stream passing through a

porous medium – with the fractional integral. Nevertheless, the effective velocity definition in

this model, which is averaged over the fractal’s discrete structure, prevents the observation of

the normal log-periodic oscillations that are inherent to any discrete-structured fractal object.

In this paper, we want to discuss some new ideas that can help to understand deeper the de-

sired relationship between the accurate averaging of the smoothed functions over fractal sets and

fractional integrals in time and space. These new results we consider as a natural generalization

of the previous and approximate results achieved in papers [1, 13,15].

2. New exact relationships connecting 1D fractals and fractional integrals

2.1. The exact relationship between temporal fractional integral and the smoothed

function averaged over the Cantor set with M bars.

In paper [13] the relationship between fractional integral with complex power-law exponent and

Cantor set has been established. But this relationship was approximate and obtained in one-

mode approximation and it would be desirable to establish the exact relationship between 1D

fractals and fractional integrals in time-domain. Attentive analysis shows that one important

point in the previous results leading to the desired exact relationship was missed. In order

to show it let us reproduce some mathematical expressions that will be helpful for further

manipulations and understanding the problem posed. As it has been shown in [13] the Laplace

image of the kernel of the Cantor set is described by expression

lim
N→∞

K(N)(z) ≡ Kν(z) =
πν(ln(z))

zν
, (1)

where z = pT (1− x), p defines the Laplace parameter, T – is a period of location of the Cantor

set, ξ is the scaling factor. The kernel K(N)(z)can be presented as

K(N)(z) =
N−1∏

n=−(N−1)

g(zξn) =
N−1∏
n=0

g(zξn)
N−1∏
n=1

g(zξ−n). (2)

Here g(z) describes the structure of the given fractal with asymptotic given below. In particular,

the Laplace image of the function g(z) for Cantor set having M bars has the form

g(z) =
1

M

1− exp

(
− zM

M − 1

)
1− exp

(
− z

M − 1

) . (3)

In order to satisfy to the functional equation of the type (4) in the limit (N ≫ 1) for the kernel

K(ξz) =
1

ḡ
K(z), (4)

the function g(z) should have the following decompositions for small and large values of z for

Re(z) ≪ 1

g(z) = 1 + c1z + c2z
2 + . . . , (5)

for Re(z) ≫ 1

g(z) = ḡ +
A1

z
+

A2

z2
+ . . . . (6)

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24105 (14 pp.) 3
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It is easy to note that for the function g(z) from (3) having M bars in each self-similar stage

these requirements are satisfied (ḡ = 1/M).

The solution of the functional equation (4) has the form (1) with power-law exponent ν

equaled [10,11]

ν =
ln(ḡ)

ln(ξ)
=

ln(1/M)

ln(ξ)
, 0 < ν < 1. (7)

The log-periodic function πν(ln z ± ln ξ) = πν(ln z) with period ln(ξ) that figures in (1) can be

decomposed to the infinite Fourier series [1, 13]

πν

(
ln(z)

ln(ξ)

)
=

∞∑
n=−∞

Cn exp

(
2πni

ln(z)

ln(ξ)

)
≡ C0 +

∞∑
n=1

(
Cnz

iΩn + C∗
nz

−iΩn
)
. (8)

Here Ωn = 2πn/ ln ξ is a set of frequencies providing a periodicity with ln ξ of product (4).

Taking into account this decomposition one can present the limiting solution of (1) in the form

Kν(z) = C0z
−ν +

∞∑
n=1

(Cnz
−ν+iΩn + C∗

nz
−ν−iΩn). (9)

Here the real exponent ν is defined by expression (7). The presentation of kernel (2) in the

form (9) allows reproducing the previous cases (when the sum in (9) is negligible and or it can

be presented in one mode approximation [13]) and finding the desired exact relationship. Really,

taking into account the well-known relationship [14]

(p)−a =:
1

Γ(a)

∫ ∞

0
ta−1 exp (−pt) dt, Re(a) ≥ 0, (10)

it is easy to find the desired original for the kernel (9)

Kν(t) = C0
tν−1

Γ(ν)
+

∞∑
n=1

(
Cn

tν−1+iΩn

Γ (ν + iΩn)
+ C∗

n

tν−1−iΩn

Γ (ν − iΩn)

)
. (11)

Here we should take into account that temporal variable t should be dimensionless. Based on

the determination of the variable z = pT (1 − ξ) (see expression (1)) it is easy to restore the

dimension of the constant t → t/T (1 − ξ). Based on the definition of the fractional integral in

the form of the Riemann-Liouville (RL) type one can write the desired relationship∫ t

0
K (t− τ) · f(τ)dτ = C0J

νf(t) +

∞∑
n=1

[
CnJ

ν+iΩnf(t) + C∗
nJ

ν−iΩnf(t)
]
. (12)

Here we define the RL-integral of the complex order as

Jν±iΩ
0 f(t) =

1

Γ (ν ± iΩ)

∫ t

0
(t− τ)ν−1±iΩ f(τ)dτ. (13)

From the exact relationship (12), it follows that the averaging procedure of a smooth function

over the generalized Cantor set (having M bars) is accompanied always by an infinite set of

fractional integrals having complex-conjugated power-law exponents. Only in the partial case

when the contribution of log-periodic function becomes negligible relationship (13) restores the

RL fractional integral with real power-law exponent [1, 13]. When the total sum in (11) can be

replaced approximately by one term

∞∑
n=1

(
Cn

tν−1+iΩn

Γ (ν + iΩn)
+ (Cn)

∗ tν−1−iΩn

Γ (ν − iΩn)

)
∼= C

tν−1+i⟨Ω⟩

Γ (ν + i ⟨Ω⟩)
+ C∗ tν−1−i⟨Ω⟩

Γ (ν − i ⟨Ω⟩)
, (14)
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then we restore the basic result of paper [1] in the so-called one-mode approximation. In re-

lationship (14) ⟨Ω⟩ defines the leading mode, which replaces approximately other modes that

figure in the left-hand side of expression (14).

2.2. Numerical verification

For verification purposes one can take time-domain expression for the kernel defined by (11) and

the corresponding one-mode approximation expression from (14).

Numerical calculations were realized with the help of the following procedure:

1. Calculation of the right side of expression (14) using one-mode approximation constants

for some given M (number of the Cantor columns) and the scaling parameter ξ from [1]

(the first 3 rows of Table 1).

2. Calculation of the fitting constants Cn (n = 1, . . . , Nm, where Nm defines the finite number

of modes in the corresponding sum (11) by the linear least-square method (LLSM)).

The values of fitting parameters for the given values of M and ξ are collected in last 3 rows of

Table 1. One can see that the fitting parameters C0, A1, Ω1, are very close to the corresponding

initial ones obtained in one-mode approximation.

Table 1. The basic initial (the first 3 rows) and the fitting parameters (rest rows) obtained in the result

of numerical verification of expression (11) (this Table is taken from [15])

M ξ ν C0 A ⟨Ω⟩ ⟨n⟩
2 0.125 0.3333 0.63 0.0082 3.01161 0.9967

5 0.05 0.5372 0.6117 0.0217 2.09144 0.9972

15 0.0167 0.6614 0.606 0.0353 1.5331 0.9991

M ξ ν C0 C1 Ω1 Nm

2 0.125 0.3333 0.62328 0.00805 3.02157 20

5 0.05 0.5372 0.61139 0.02157 2.09438 20

15 0.0167 0.6614 0.60640 0.03523 1.5346 20

Results of further numerical calculations are collected in figures 1, 2 and 3. There one can see

that contribution of each next term in the sum (11) decreases drastically in comparison with the

previous one. This observation serves as a good proof of the validity of one-mode approximation

approach proposed in [13].

After analyzing the data from this part, we discovered that the fitting error value reaches a

plateau as Nm increases, and that higher terms, such as n = 1, 2, . . . , Nm, contribute relatively

little to the overall outcome. It is evident that the fitting error is primarily dependent on

parameter, which describes the primary harmonics contribution.

2.3. Physical interpretation of this result and possible generalizations

To understand deeper the results from physical point of view it makes sense to start from the

simplest physical examples which can clarify the procedure considered above. For this purpose

we consider at first the following mechanical problem. How to calculate the total and averaged

path ⟨L(t)⟩ for some interval of the time t for a set of material points (particles) if every particle

is moving in one direction with the constant velocity V coinciding with the points of Cantor set

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24105 (14 pp.) 5



Fractals and fractional integrals: Are there some. . .

Figure 1. Here two successive stages of the modified binary set are shown. The set of velocities outside

of the Cantor set are random. The widths of Cantor bars are denoted as {∆i (i = 0, 1, 2)},
the set of velocities {Vi} defines the movement inside the set. (This figure is taken from the

book [13])

Figure 2. The fitted Cn coefficients presented in log-scale (y-axis) correspond to the successive terms of

the sum in (11) (x-axis) for M = 2 (open circles), M = 5 (open squares) and M = 15 (open

triangles). (This figure is taken from paper [15])

and is idle outside the set? The expression for the path LN (t) on the N -th stage of Cantor set

construction has the form:

LN (t) = V

∫ t

0
K

(N)
T,ν (τ)dτ. (15)

Here the value K
(N)
T,ν determines the Cantor set located on the temporal interval T on the N -

th stage of its self-similarity having M bars and dimension ν defined by expression (7). The

value of the normalization interval T for the given case can be found from the condition that

during the interval T the body passes the distance L∗. Hence, T = L∗/V . Then, integrating

expression (11) we obtain

Lν(t) =
L∗

Γ (1 + ν)

(
t

T

)ν

×

[
1 +

∞∑
n=1

(
cn

Γ(1 + ν)

Γ (ν + 1 + iΩn)

(
t

T

)iΩn

+ c∗n
Γ(1 + ν)

Γ (ν + 1− iΩn)

(
t

T

)−iΩn
)]

.

(16)

6 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24105 (14 pp.)
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Figure 3. Relative fitting error in % (y-axis) versus number of modes (x-axis) for (a) M = 2, (b) M = 5

and (c) M = 15. (This figure is taken from paper [15])

The sum entering in (16) determines the log-periodic corrections appearing in the result of

discretization of the Cantor set. Then, realizing the averaging procedure for the total assembly

of particles described in a book [13], we obtain

⟨L(t)⟩ = L ∗ [B(ν)]

Γ(1 + ν)

(
V t

L∗

)ν

. (17)

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24105 (14 pp.) 7
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Here B(ν) determines the averaged value of the sum located in the square brackets (16). For

the binary Cantor set it can be evaluated analytically that gives

B(ν) = ⟨πT,ν(z)⟩ =
∫ 1/2

−1/2
πT,ν(z + x ln ξ)dx =

2−(1+ν/2)

ln 2
. (18)

In fact, if every particle is just moving inside the Cantor set with the fractal dimension and we

are only concerned with the averaged path of the entire assembly, then formula (17) describes

the dependence of the averaged path as the function of time for a collection of particles. What

portion of the assembly states are involved in this movement is indicated by the fractal dimension

ν. It is also important to note that the precise moments at which a particular type of movement

transitions into an idle state are averaged. As a result, only a portion of all the states involved

in the distribution across Cantor sets are known to us after the averaging method is completed.

The Cantor’s “filter”, which allows one type of movement to be filtered and another type of

movement to be deleted (due to the normalizing of the states) is represented by the averaging

operation of a smoothed function over the Cantor set as previously explained. The constant (18)

describes the averaged log-periodic states. It is what comes out of this “filtration” process. We

examine more complex examples to emphasize the Cantor set’s filtration capabilities. Assume

for the moment that an assembly of bodies is moved with a range of random velocities, denoted

by {Ui}, in the intervals between Cantor stripes. The steps of Cantor building are indicated by

the index i = 1, 2, . . . , N, . . . . Fig. 1 depicts the updated Cantor set in two steps. The other two

figures 2 and 3 demonstrate the influence of the remaining terms for different values of columns

M .

It is interesting to set up the following question: Is there a condition for the distribution of

velocities {Ui} when the influence of movement outside the set becomes negligible?

In this case the recurrence relationship for the density is expressed by formula:

K
(N)
∆N

(t) = VN

[
K

(N−1)
∆N

(t) +K
(N−1)
∆N

(t− (∆N−1 −∆N ))
]

+UN

[
K

(N−1)
∆N

(t− (∆N−1 −∆N ))−K
(N−1)
∆N

(t−∆N )
]
.

(19)

For Laplace-image with the help of retardation theorem

F (t− a) =: exp (−pa)F (p), (20)

one can obtain the following expression:

K
(N)
∆N

(p) = VN
1− exp(−p∆N )

p

N−1∏
n=0

(1 + exp(−p(∆n −∆n+1)))+

+
N−1∑
k=0

Uk+1
exp(−p∆k+1)− exp(−p(∆k −∆k+1))

p

k−1∏
n=0

(1 + exp(−p(∆n −∆n+1))) .

(21)

The total area on the N -th stage is given by the following expression:

2NVN∆N +
N−1∑
k=0

2kUk+1(∆k − 2∆k+1) = SN . (22)

We require that the total area on every stage remains the same (it is equivalent to the condition

of conservation of the total number of states):

SN = SN−1 = . . . S0. (23)

8 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24105 (14 pp.)
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Let us assume that Ui = Ū + δUi, where

Ū =
1

N

N∑
i=1

Ui (24)

is the arithmetic mean of random velocity. The set δUi (i = 1, 2, . . . , N, . . . ) defines the random

deviations of Ui. We assume that these deviations {δUi} satisfy the condition:

N−1∑
k=0

2kδUk+1(∆k − 2∆k+1) = 0. (25)

Based on this condition one can rewrite (21) as

K
(N)
∆N

(p) =

(
S0 − ŪT

)
(2ξ)NT

[
1− exp(−pTξN )

p

]N−1∏
n=0

(1 + exp(−pT (1− ξ)ξn))

+Ū
1− exp (−pT )

p
.

(26)

If we propagate the binary Cantor set on the whole temporal interval (“in” and “out” of the

given T ) we obtain from

K
(N≫1)
∆N

(z) ∼=
S0 − ŪT

T

N−1∏
n=−(N−1)

[
1 + exp (−zξn)

2

]
+ Ū · T 1− exp (−pT )

pT
. (27)

The first part of (27) satisfies to the scaling equation (4) with ḡ = 2 and the second part is

proportional to t. If we, again, apply the averaging procedure then we obtain

⟨L(t)⟩ = L ∗
(
1− Ū

V

)
B(ν)

Γ(1 + ν)

(
V t

L∗

)ν

+ Ū t. (28)

The last expression confirms again the filtration properties of the Cantor set. It divides all

motion on two parts: (a) the first motion of the particles located inside the Cantor set, the

second part describes the motion that takes place outside the fractal set.

2.4. New relationships connecting a fractal process in time with the smoothed func-

tion by means of the fractional integral

It is natural to consider another self-similar fractal process, which can be presented in the form

of an additive summation [1,13]. These sums are appeared naturally when the self-similar RLC

elements connected in parallel or in-series are considered in papers [1, 13]

S(z) = s0

N∑
n=−N

bnf (zξn) . (29)

Here z is dimensionless Laplace parameter, b and ξ are some constant scaling factors. Each

term in (29) can be associated, for example, with the scaled resistor (Rn = R0b
n), capacitance

(Cn = R/zξn, z = jωRC) or inductance (Ln = Rzξn, z = jωL0/R) that can form a self-similar

fractal circuit [13] or with additive contribution of a bar belonging to some Cantor set. In this

case, an additive contribution of each bar is expressed by the function

f (zξn) =
1− exp (−zξn)

zξn
. (30)
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It is easy to note that sum (29) satisfies to the following equation

S(zξ) = s0

N∑
n=−N

bnf(zξn+1) = s0

N+1∑
n=−N+1

bn−1f(zξn)

=
1

b
S(z) + bNf

(
zξN+1

)
− b−N−1f

(
zξ−N

)
.

(31)

We suppose that the contributions of the last two terms on the ends of the finite interval are

negligible

bNf
(
zξN+1

)N≫1∼= 0, b−N−1f
(
zξ−N

)N≫1∼= 0. (32)

Below we will discuss these suppositions in detail. Equation (31) at conditions (32) satisfies the

following functional equation that formally coincides with equation (4) considered above

S(zξ) =
1

b
S(z), (33)

So, based on the results obtained in the previous section one can write

S(z) = z−ν Pr(ln z), ν = ln(b)/ ln(ξ), Pr (ln z ± ln ξ) = Pr (ln z) . (34)

In spite of the formal coincidence of equation (33) with (4), in order to satisfy to conditions (32)

the function f(z) in (31) should have another asymptotic decomposition for Re(z) ≪ 1

f(z) = c1z + c2z
2 + . . . , (35)

for Re(z) ≫ 1

f(z) =
A1

z
+

A2

z2
+ . . . , (36)

and condition

1 < b < ξ. (37)

As it follows from (20) the last condition provides in addition the obvious inequality

0 < ν =
ln(b)

ln ξ
< 1. (38)

So, the results obtained for the sum (31) coincides with the results obtained earlier for the

product (2) and the exact relationship in time-domain (11) with subsequent convolution (12)

of the kernel (11) with a smooth function remains invariant. Is it possible to consider more

complicated self-similar process that is presented by an additive combination of two sums of the

type?

S(z) = s1

N∑
n=−N

bn1f1 (zξ
n) + s2

N∑
n=−N

bn2f2 (zξ
n) ≡ S1(z) + S2(z). (39)

If we assume, by analogy with requirement (32) that the contribution of each sum on the end

of the intervals are negligible

bN1,2f1,2
(
zξN+1

)N≫1∼= 0, b−N−1
1,2 f1,2

(
zξ−N

)N≫1∼= 0, (40)

(here the number of elements N and the scaling factor ξ for both sums are kept the same values)

then from (39) we have a system of equations

S(zξ) =
1

b1
S1(z) +

1

b2
S2(z),

S(zξ2) =
1

b21
S1(z) +

1

b22
S2(z).

(41)
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Excluding from (39) and the first row of (31) the unknown sums S1,2(z) (defined above by

expressions (39)) and inserting them to the second row of (31) we obtain the generalized scaling

equation of the second order

S(zξ2) =

(
1

b1
+

1

b2

)
S (zξ)− 1

b1b2
S(z). (42)

Solutions of the scaling equations of the second order was considered in paper [2] and, therefore,

we can write

S(z) = zν1 Pr
1
(ln z) + zν2 Pr

2
(ln z), (43)

where the power-law exponents are found from the equation

ξ2ν −
(

1

b1
+

1

b2

)
ξν +

1

b1b2
= 0, ν1,2 =

ln (1/b1,2)

ln ξ
. (44)

In solution (43) we have now two log-periodic functions Pr1,2 (ln z ± ln ξ) = Pr1,2(ln z) that can

be decomposed to the Fourier series relatively variable ln(z). Therefore, one can present the

solution (43) in the form

S(z) = C
(1)
0 z−ν1 +

∞∑
n=1

[
C(1)
n z−ν1+iΩn +

(
C(1)
n

)∗
z−ν1−iΩn

]
+

+C
(2)
0 z−ν2 +

∞∑
n=1

[
C(2)
n z−ν2+iΩn +

(
C(2)
n

)∗
z−ν2−iΩn

]
,

(45)

where we introduced new definitions of the power-law exponents and discrete frequencies reflect-

ing the discrete structure of the fractal process considered.

Moreover,this results can be further generalized. Let us suppose that we have three additive

combination of self-similar processes

S(z) = s1

N∑
n=−N

bn1f1 (zξ
n) + s2

N∑
n=−N

bn2f2 (zξ
n) + s3

N∑
n=−N

bn3f3 (zξ
n)

≡ S1(z) + S2(z) + S3(z).

(46)

The functions fk(z) (k = 1, 2, 3) are chosen in a such way that their contributions on the ends

of the interval remain negligible

bNk fk
(
zξN+1

)N≫1∼= 0, b−N−1
k fk

(
zξ−N

)N≫1∼= 0, k = 1, 2, 3. (47)

We suppose again that for each function fk(z) (k = 1, 2, 3) the asymptotic behavior similar

to expressions (35) and (36) is conserved. Therefore, the suppositions (33) are satisfied if the

constants bk and ξ follow the requirements

1 < bk < ξ, k = 1, 2, 3. (48)

Therefore, we obtain the following system of equations for the finding of unknown Sk(z)

S(z) = S1(z) + S2(z) + S3(z),

S(zξ) =
1

b1
S1(z) +

1

b2
S2(z) +

1

b3
S3(z),

S(zξ2) =
1

b21
S1(z) +

1

b22
S2(z) +

1

b23
S3(z).

(49)
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Excluding from the system (49) the unknown sums Sk(z) and inserting them into the relationship

S(zξ3) =
1

b31
S1(z) +

1

b32
S2(z) +

1

b33
S3(z), (50)

after simple algebraic manipulations we obtain the following functional equation with respect

to the function Sz

S(zξ3) = a2S
(
zξ2
)
+ a1S (zξ) + a0S(z),

a2 =
1

b1
+

1

b2
+

1

b3
, a1 = −

(
1

b1b2
+

1

b1b3
+

1

b3b2

)
, a0 =

1

b1b2b3
.

(51)

The solution of the functional equation (51) can be written as

S(z) = zν1 Pr
1
(ln z) + zν2 Pr

2
(ln z) + zν3 Pr

3
(ln z), (52)

The power-law exponents entering into (52) are found from the cubic equation

ξ3ν − a2ξ
2ν − a1ξ

ν − a0 = 0, (53)

and can expressed as

νk =
ln(1/bk)

ln ξ
= − ln(bk)

ln ξ
, 0 < |νk| < 1, k = 1, 2, 3. (54)

Therefore, expression (45) conserves its form and for this case the solution (52) can be rewritten

as

S(z) =

3∑
k=1

C
(k)
0 z−νk +

3∑
k=1

∞∑
n=1

[
C(k)
n z−|νk|+iΩn +

(
C(k)
n

)∗
z−|νk|−iΩn

]
. (55)

It is quite obvious that this result admits the further generalization for the case of k = 1, 2, . . . ,K

sums

S(z) =

K∑
k=1

sk

N∑
n=−N

bnkfk (zξ
n) ≡

K∑
k=1

Sk(z). (56)

Using the mathematical induction method one can write the final result for this case

S(z) =
K∑
k=1

zνk Pr
k
(ln z) =

=

K∑
k=1

C
(k)
0 z−νk +

K∑
k=1

∞∑
n=1

[
C(k)
n z−|νk|+iΩn +

(
C(k)
n

)∗
z−|νk|−iΩn

]
,

(57)

The desired roots are found from the relationships

|νk| =
ln(bk)

ln ξ
, 1 < bk < ξ, 0 < |νk| < 1. (58)

So, the kernel connecting the given fractal process with a smooth function in time-domain accept

the following general form

Kν(t) =

K∑
k=1

C
(k)
0

tνk−1

Γ(νk)
+

K∑
k=1

∞∑
n=1

(
C(k)
n

tνk−1+iΩn

Γ (νk + iΩn)
+
(
C(k)
n

)∗ tνk−1−iΩn

Γ (νk − iΩn)

)
. (59)
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To the best of our knowledge, this is the most general result that can be obtained for a set

of additive self-similar processes in time. As one notice from the calculations, all dynamical

functions describe a self-similar process with the same scale ξ. If the scales are different and the

discrete boundaries of the processes are different also Nk ̸= N then these results are becoming

questionable and require the further research. But nevertheless, one can show the situation

taking place for different scales ξi ̸= ξ when the result can be reduced to the case considered

above. Let us suppose that we have a product combining a random combination of different

scales

Pn =
n∏

s=1

ξs, (60)

but the deviations from some averaged scale (considered as the dominant scale) are small. We

have for this case

Pn =
n∏

s=1

ξs =
n∏

s=1

(⟨ξ⟩+ δs) = ⟨ξ⟩n
n∏

s=1

(
1 +

δs
⟨ξ⟩

)
= ⟨ξ⟩n exp

(
n∑

s=1

ln

(
1 +

δs
⟨ξ⟩

))
. (61)

For the condition δs⟨ξ⟩ ≪ 1 we have approximately

Pn
∼=

(
⟨ξ⟩ exp

[
⟨δ⟩
⟨ξ⟩

−
〈
δ2
〉

2 ⟨ξ⟩2
+

〈
δ3
〉

3 ⟨ξ⟩3

])n

,

⟨δp⟩ = 1

n

n∑
s=1

δps , p = 1, 2, . . . .

(62)

Therefore, this result allows to consider different scales if they are not strongly deviated from

each other. All the previous results are valid if we simply replace

ξ → ⟨ξ⟩ exp
(
⟨δ⟩
⟨ξ⟩

)
exp

(
−
〈
δ2
〉

2 ⟨ξ⟩2

)
. . . , with ⟨ξ⟩ = 1

n

n∑
s=1

ξs. (63)

3. Results and discussion

Many researchers in the fields of fractional calculus and fractal geometry are still “hot” on the

precise links between fractals and fractional integrals. Based on the findings presented in this

study, it is evident that the fractional power-law exponent’s complex-conjugated component is

significant. It is important to note that while the power-law exponent with complex additive

has been reported in a few articles, its physical and geometrical origin has not been established.

Based on the aforementioned findings, it can be concluded that the complex-conjugated com-

ponent is closely linked to the fractal process’s discrete structure and should, at minimum, be

considered in fractional and kinetic equations that attempt to describe self-similar processes in

the time domain. As for the spatial fractional integral the finding of the accurate relationship

for the given fractal in space remains an open problem. This problem can be divided at least

on two parts:

(a) The finding of the proper fractional integral based on the given fractal structure

(b) To find a proper fractal for the fractional integral that is chosen for description of the

self-similar process in space.

From our point of view, the general solution of this complex problem is absent because each

fractal in space can generate a specific fractional integral [2] but any efforts of researches actively

working in this interesting field are very welcome [16,17].
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14. Erdélyi A., Magnus W., Tables of integral transforms, Vol. 21 (McGraw-Hill Company, New

York, 1954) p. 391

15. Nigmatullin R. R., Zhang W., Gubaidullin I., Fractional Calculus and Applied Analysis 20,

1263 (2017)

16. Butera S., Di Paola M., Annals of Physics 350, 146 (2014)

17. Maione G., Nigmatullin R. R., Machado J. A. T., Sabatier J., Mathematical Problems in

Engineering 2015, 870841 (2015)

14 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24105 (14 pp.)


