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Two methods for calculating the superconducting transition critical temperature of supercon-

ductor / ferromagnetic metal heterostructures in the dirty limit are compared. The first method

relies on an approximation where the order parameter is assumed to be constant within each

superconducting layer. The second method does not use any approximations and involves a nu-

merical iterative process where the critical temperature and the order parameter distribution are

jointly searched for in each iteration. Using these methods, we study various heterostructures

involving a ferromagnetic and superconducting layers, including case where the ferromagnetic

layer is split into domains.
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1. Introduction

Layered structures containing superconducting (S) and ferromagnetic (F) materials allows to

observe a wide range of interesting and important phenomena associated with the coexistence

of these two types of ordering in the conduction electron subsystem. Compared to conventional

magnetic superconductors, these layered S/F structures are not limited to a specific class of

compounds, allowing a variety of superconducting and ferromagnetic metals to be used into

systems with desired properties for practical applications. The exchange interaction between lo-

calized and collectivized electrons leads to the phase rotation of the anomalous Green’s function,

which describes the state of superconducting electrons penetrating into ferromagnetic layer [1].

This interaction can cause non-linear behavior of the critical temperature and critical Josephson

current as the thickness of the ferromagnetic layer is changed [1–3]. These systems can also be

used as spin-switch devices. In systems such as F/F/S [4], F/S/F [5,6] and systems with a larger

number of layers [7–11], the critical temperature of the system can change depending on the

relative orientation of the magnetization of the individual ferromagnetic layers. In systems with

two superconducting layers separated by a ferromagnetic layer, the relative phase difference ∆ϕ

between the superconducting order parameters may be different from zero. Within a certain

range of ferromagnetic layer thicknesses, the phase difference is equal to π [12, 13] and these

systems are known as a π junctions.

The contact between a superconductor and an inhomogeneous ferromagnet can significantly

expand the range of observable phenomena. The presence of an inhomogeneous magnetization

leads to the emergence of triplet correlations, which can be observed through the long-range

proximity effect [14]. This effect manifests itself in the deep penetration of triplet pairs into the

ferromagnetic metal, and can be traced by the dependence of the Josephson current on the thick-

ness of the ferromagnetic barrier. When a superconductor comes into contact with a ferromagnet
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split into domains, a significant increase in the intensity of superconducting correlations near

domain boundaries occurs. This leads to a local increase in the critical temperature [8, 15–17]

and critical Josephson current [18]. Another interesting scenario is the contact between a super-

conductor and a chiral ferromagnet. In particular, the bound state between the skyrmion and

the Abrikosov vortex is of great interest to researchers [19,20].

To calculate the superconducting critical temperature in heterostructures, the most con-

venient and widely used methods are based on solving quasi-classical superconducting equa-

tions. Within this framework, a boundary-value problem is formulated and supplemented with

self-consistency equation. Despite the fact that the Usadel and Eulenberger equations can be

linearized near the critical temperature, the task becomes difficult for complex magnetization

configurations in a ferromagnetic layer. To solve the Usadel equations, two types of methods

can be identified: approximate methods such as the single-mode approximation [3] and the ap-

proximation of a constant order parameter within each layer [21,22], and exact methods such as

the multimode method and fundamental solution method [23]. The latter method and its slight

modifications have been used in numerous works [1, 2, 24]. However, they require the existence

of an analytic solution to the Usadel equations for a ferromagnetic layer.

This study compares the approximation of a constant order parameter within each layer [21,

22] (we will call it below ”Step order parameter method” ) with the recent iterative numerical

method [17]. The accuracy of the latter method does not differ from the fundamental solution

method. The advantage of this method lies in its applicability to a wider range of complex

systems. We will briefly describe both methods and compare the calculated critical tempera-

ture in various ways and order parameter distribution for some superconductor / ferromagnetic

heterostructures.

2. Model

In this paper, we consider the layers of a superconductor and a ferromagnet in the dirty limit.

This means the coherence length in a superconductor and ferromagnet ξs(f) is significantly

greater than the corresponding free path lengths ls(f) [1, 3]. This ratio of parameters is typical

for most experimental systems [1,12,25]. In this case we can use the Usadel equations for S and F

layers [3] to describe proximity effect in layered system. The field generated by a ferromagnetic

layer plays an important role in certain cases [26]. For very thin ferromagnetic films, it is

relatively weak and, according to most researchers (see, e.g., work [27] or reviews [1–3]), the

critical temperature in the case of good metal contact is affected mainly by the penetration

of Cooper pairs into the ferromagnet. We will neglect such fields in this work. The Usadel

equations for a ferromagnetic layer with arbitrary magnetization can be written as [28,29]:

Df

2
∇̂2F̂f (r, ω)− |ω|F̂f (r, ω)−

i

2
sgnω

{
(I · σ̂) , F̂f (r, ω)

}
= 0, (1)

where ω is the Matsubara frequency, I is the vector of the effective exchange field, F̂f (r, ω)

and Df are Usadel matrix functions [28,30] and the diffusion coefficient in ferromagnetic layer,

respectively. σ̂ is a vector composed of Pauli matrices. Here and further, for simplicity, it is

assumed that kB = µB = ℏ = 1, where kB is the Boltzmann constant, µB is the Bohr magneton.

In the superconducting layer, the Usadel equations have the form

Ds

2
∇̂2F̂s(r, ω)− |ω|F̂s(r, ω) = −∆(r), (2)

∆(r) is the superconducting order parameter, F̂s(r, ω) and Ds are the Usadel matrix function

and the diffusion coefficient in the superconducting layer, respectively. In this paper, we will
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consider systems without a supercurrent, and we also do not take into account the existence

of electron-electron interaction in the ferromagnetic layer [31]. The boundary conditions at the

external boundaries correspond to a lack of Cooper pair flow through them

∂F̂s(f)(r, ω)

∂x
= 0. (3)

Here and further, for simplicity of writing, we assume that the boundaries are parallel to the

plane x = 0. In general, the partial derivative with respect to x will be replaced by a direc-

tional derivative along the normal to the boundary. On the internal S/F borders, we apply the

generalized Kupriyanov-Lukichev boundary conditions [3, 32]

4Ds

σsυs

∂F̂s(r, ω)

∂x
=

4Df

σfυf

∂F̂f (r, ω)

∂x
,

4Df

σfυf

∂F̂f (r, ω)

∂x
= F̂f (r, ω)− F̂s(r, ω),

(4)

where σs(f) are the transparency parameters from superconductor (ferromagnetic metal) side.

Taking into account the condition of the detailed balance [33] Ns(0)σsυs = Nf (0)σfυf these

values are related to each other through a parameter nsf = Nf (0)υf/Ns(0)υs, where Ns(f)(0)

is the density of electronic states at the Fermi level, υs(f) is the Fermi velocity. The boundary

value problem is accompanied by the self-consistent equation [1]

∆(r) ln
T

Tcs
= πT

ωD∑
ω>0

Sp

(
F̂s(r, ω)−

∆(r)

|ω|

)
, (5)

where Tcs is the critical temperature of the bulk superconductor, and ωD is the Debye frequency.

3. Step order parameter method

To solve the boundary value problem described above in conjunction with the self-consistency

equation, we can use the following approximation: the order parameters in the Usadel equations

and self-consistency equations are replaced with their average values for each S layer. With this

approximation, equations (2) and (5) take the forms:

Ds

2
∇̂2F̂s(k)(r, ω)− |ω|F̂s(k)(r, ω) = −∆(k), (6)

∆(k) ln
T

Tcs(k)
= πT

ωD(k)∑
ω>0

Sp

(
⟨F̂s(k)(r, ω)⟩(k) −

∆(k)

|ω|

)
, (7)

where index k lists superconducting layers. The angle brackets indicate averaging within the

layer. The system of differential equations (1), (6) together with the boundary conditions (3)-

(4) forms a boundary value problem that allows us to obtain an analytical expression for the

Usadel functions for fairly simple magnetization configurations. For more complex magnetic tex-

tures, a numerical solution of the boundary value problem can be used. The obtained functions

Fs(k), averaged over the x coordinate within the layer, are substituted into the system of self-

consistency equations (7), which allows us to obtain a system of homogeneous linear equations

for ∆k. The nontriviality condition for this system is the equation on the critical temperature

of the heterostructure.

For example, we provide the equations for the critical temperature in the case of two super-

conducting layers with collinear magnetization in the ferromagnetic layers. In this case, it is
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enough to consider the scalar Usadel function that is responsible for the a zero-spin component

of the superconducting condensate. The Usadel function Fs(k)(r, ω,∆1,∆2) depends linearly on

the average order parameters ∆1 and ∆2. In this notation, the equation for Tc has the following

form (
ln

Tc

Tcs
− 2πTcRe

ωD∑
ω>0

(
⟨Fs1(r, ω, 1, 0)⟩(1) −

1

ω

))

·

(
ln

Tc

Tcs
− 2πTcRe

ωD∑
ω>0

(
⟨Fs2(r, ω, 0, 1)⟩(2) −

1

ω

))
=

= (2πTc)
2Re

ωD∑
ω>0

⟨Fs1(r, ω, 0, 1)⟩(1) · Re
ωD∑
ω>0

⟨Fs2(r, ω, 1, 0)⟩(2).

(8)

The critical temperature of a system is the largest root of the given equation. In practice, there

is usually only one solution.

4. Iterative method

Without resorting to approximations, problem described in the ”model” chapter can be solved

using the multimode or fundamental solution methods, if it is possible to obtain an analytical

solution for the Usadel equation in a ferromagnetic layer. In the more general case, an iterative

approach can be used [17], which we will briefly describe in this section (see the algorithm

diagram in Figure 1).

Figure 1. The iterative algorithm’s scheme.

1. At the first stage, the starting temperature is selected (less than the maximum of the

Tcs values for superconducting layers), and the order parameter in one or more layers is

defined. A constant order parameter in one of the superconducting layers is often chosen.

For more information on choosing the initial configuration of the order parameter for

multilayer systems see [17].

2. The boundary value problem described in the model section is then solved using any

method. We use the finite-difference method in the current implementation.
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3. To calculate the order parameter in each layer during the next iteration, we use a self-

consistency equation of the following form:

∆(r) = λex(k)πTc

ωD∑
ω>0

Sp F̂s(k)(r, ω), (9)

where λex(k) is expressed from the bulk critical temperature

λex(k) =

(
2πTcs(k)

ωD∑
ω>0

1

ω

)−1

, (10)

where index k lists superconducting layers.

4. Next, we calculate the average value of the order parameter modulus throughout the entire

system and define the parameter a = ⟨|∆|⟩/⟨|∆0|⟩. This parameter plays a crucial role in

analyzing the present state of convergence of the algorithm.

5. The temperature is also adjusted at each iteration. The current implementation utilizes

the following formula:

Tc(n+1) = Tc(n)a
p(Tcs/Tc(n)), (11)

where parameter p ( 0.3 < p < 10 in the current implementation) is adjusted to achieve

faster and more stable convergence. In this formula, the largest Tcs in the system is

selected.

6. When the order parameters in neighboring iterations converge to a given accuracy, we

conclude that the self-consistent boundary value problem has been solved. Otherwise the

order parameter is normalized by the value of a, and we proceed to calculate the Usadel

function (Step 1).

The temperature obtained during the operation of the algorithm can be considered the critical

temperature. Strictly speaking, the critical temperature would be the highest temperature at

which self-consistency is ensured within the framework of this algorithm. However, in most

cases, the algorithm finds a single solution with the accuracy set. A similar situation arises in

the context of the possibility of multiple roots in equation on the critical temperature (8). For

S/F bilayer with homogeneous ferromagnetic materials, the results obtained using our technique

are consistent with the results obtained by the fundamental solution method reported in [23].

5. Methods comparison

Let us first consider the simplest case of a superconductor in contact with a homogenous fer-

romagnet. The Figure 2 shows the dependence of critical temperature on the thickness of the

superconducting layer for different thicknesses of the superconducting layer. The calculations

were done using the two methods described above. For example we chose a case of high trans-

parency, where we expect the most significant differences between the results obtained by these

methods. In Figures 2-4, the parameters used are close to experimental values for vanadium as a

superconductor: ls = 77 Å, ξs = 100 Å, 2Iτf = 0.3 (τf is the mean free time in the ferromagnet),

nsf = 3, I = 500K, af = 10 Å, Tcs = 5.4, ωD = 390K. The results from both methods are quite

similar. A significant qualitative difference was observed in a narrow range where the critical

temperature is highly sensitive to a set of parameters.
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Figure 2. Critical temperature of the S/F structure calculated by various methods. The blue curves

correspond to the iterative method, the black ones correspond to step order parameter method.

Transparency parameter σs = 8, and S layer thickness ds = 145 Å for solid lines, ds = 150 Å

for dashed lines, ds = 180 Å for dotted lines, ds = 250 Å for dash-dotted lines.

Figure 3. Critical temperature of the S1/F/S2 structure calculated by various methods. The blue

curve corresponds to the iterative method, the black one corresponds to step order parameter

method. Inset shows the distribution of the order parameter within the system for different

ferromagnetic layer thickness. Transparency parameter σs = 10, S layer thickness ds1 = 150 Å,

ds2 = 140 Å.
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Figure 4. Critical temperature contact of superconductor / ferromagnet split into periodical domains

structure calculated by various methods. The blue curve corresponds to the iterative method,

the black one corresponds to step order parameter method. Insert shows the distribution

of the order parameter within the system. The arrows indicate the positions of the domain

walls. Transparency parameter σs = 10, S layer thickness ds = 150 Å, period of the domain

structure ld = 1000 Å, domain wall thickness ldw = 25 Å.

The Figure 3 shows the dependence of the critical temperature for an asymmetric S/F/S

heterostructure as a function of the ferromagnetic layer thickness df , calculated by two different

methods. The inset shows the distribution of the order parameter as a function of the coor-

dinate perpendicular to the boundaries, for cases of equilibrium phase difference of the order

parameter 0 and π. The step order parameter method shows a very rough but qualitatively

correct distribution of the order parameter within the system.

The Figure 4 shows the critical temperature for the contact of a superconductor with a

ferromagnet split into domains by the two methods presented above. The inset shows the profile

of order parameter in superconducting layer using two methods. By definition, approximate

method shows constant value throughout entire layer. The domain wall is described by the

following dependence of the polar angle on the coordinate [34].

θ = 2arctan exp

(
y − y0
ldw

)
, (12)

where y0 is the position of the domain wall, ldw is taken to be the domain wall thickness. If the

azimuthal angle φ = π
2 it is the Neel domain wall and if φ = 0 it is the Bloch domain wall. If

we neglect the magnetic field, then the type of wall does not affect the critical temperature. In

this case the qualitative differences between methods are slightly more significant because an

approximate method can not take into account the distribution of order parameter across the

border.
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6. Summary

We have carried out a critical temperature calculation for various heterostructures of a ferromag-

netic superconductor using two different methods: step order parameter method and iterative

method. In fairly simple cases, it is possible to obtain an analytical solution for boundary

value problem. In this instance, only the critical temperature equation needs to be calculated

numerically, and step order parameter method turns out to be more computationally efficient

than iterative method and the fundamental solution method. The profile of the order parameter

appears to be rather rough, but it does allow for accurate determination of the position of the

phase transition from the 0 to π state. The calculation of the critical temperature gives satisfac-

tory accuracy in many cases. Application of step order parameter method for superconductor /

inhomogeneous ferromagnetic systems is more suitable. Such a method is not able to take into

account the change of the order parameter due magnetization inhomogeneity distribution across

the boundary. A modified version of this method has been used in previous studies [16, 35]

for complex magnetic textures. But in both cases, due to approximations, the problem has

been reduced to a set of one-dimensional boundary value problems. However, for the inter-

face between a superconductor and a ferromagnet with helicoidal or conical magnetization [24],

the applicability of this method is similar to homogeneous ferromagnetic material after local

unitary transformations of the Usadel equation. Iterative method is well suited for calculating

the critical temperature and the order parameter distribution for systems where an analytical

solution for the Usadel equation in a ferromagnetic layer is not available or for complex system

geometries. Such systems are discussed in more detail in [17]. For relatively simple problems,

the method may not offer clear advantages over the fundamental solution method, but performs

well due to its versatility and ease of use.
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