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Note on possibility of proximity induced spontaneous currents
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We analyse the possibility of the appearance of spontaneous currents in proximated supercon-

ducting/normal metal (S/N) heterostructure when Cooper pairs penetrate into the normal metal

from the superconductor. In particular, we calculate the free energy of the S/N structure. We

show that whereas the free energy of the N film FN in the presence of the proximity effect

increases compared to the normal state, the total free energy, which includes the boundary term

FB , decreases. The condensate current decreases FN , but increases the total free energy making

the current-carrying state of the S/N system energetically unfavorable.

PACS: 74.25.Bt,74.45.+c,74.78.-w

Keywords: proximity effect, spontaneous supercurrent, superconductivity

1. Introduction

Penetration of Cooper pairs into the normal metal (N) in superconductor/normal metal (S/N)

heterostructures, provided the interface transparency is not too small, is a well-known effect [1–

4]. This so-called proximity effect (PE) is related to the Andreev reflections of electrons at the

interface of the S/N bilayer [5]. In particular, the depth of Cooper pairs penetration into the N

in the diffusive case is equal to ξN ∼=
√
DN/2πT where DN = vl/3 is the diffusion coefficient,

and becomes smaller if the condensate moves. The proximity effect is utilized in various S/N/S

Josephson junctions [6–8] and other superconducting devices [9–12] as it leads to a number

of interesting physical phenomena. The most famous of these is the advantageous Josephson

coupling in S/N/S Josephson junctions with the N layer being significantly thicker (up to a

few microns) than the insulating (I) barrier in tunnel Josephson junctions [6–8]. Furthermore,

in contrast to the conventional tunnel S/I/S junction, the properties of the Josephson S/N/S

junctions can be modified by varying the characteristics of the normal metal layer. For example,

if there is an exchange field in the N metal, i. e. a ferromagnetic metallic layer F is used,

then the critical current Ic may even change sign [12–17], yielding the so-called π-junctions.

Note, the change of sign in Ic may also be achieved in conventional S/N/S multi-terminal

Josephson junctions if the electric potential of the normal metal N is shifted with respect to the

S counterparts [9,18–21]. More recently, spectrum of Andreev bound states in S/N-multiterminal

structures with potentially non-trivial topological bands with Weyl points was also investigated

[22,23].

Despite of these continuous research efforts in simple S/N systems and their derivatives,

outlined above, the origin of certain effects remains mysterious. For example, an interesting

paramagnetic re-entrant effect (sometime called Mota effect) caused by spontaneous currents in

S/N bilayer was observed in Refs. [24–27]. The authors of Ref. [28] proposed an explanation in

terms of a repulsive interaction with a negative small coupling constant λN i.e. assuming the

normal metal may acquires a gap, ∆N , which sign is opposite to that in a superconductor, ∆.

However, the predicted paramagnetic response caused by spontaneous currents turned out to

†This paper is dedicated to Professor Boris I. Kochelaev on the occasion of his 90th birthday.
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be too small because of the smallness of the superconducting order parameter in N ∆N ∼ λN ,

and thus the origin of the Mota effect remains unclear [27]. Note, the paramagnetism and

spontaneous currents may occur in S/F system [29–32] or S/F/N structures [33, 34]. However,

there the origin of the paramagnetic effect should be quite different from that in S/N structures

as in the former it is related to internal exchange fields existing in the ferromagnet F and to the

triplet Cooper pairs induced in the film F by the PE [12–17]. In S/N/S Josephson junctions in a

non-equilibrium [35] spontaneous currents arise when the Josephson current in S/N/S junctions

changes sign [9, 18–21] but this situation then resembles the case of S/F/S junctions with a

negative Josephson current [12–17]. Therefore, the situation of the S/N bilayer in equilibrium

requires a separate study.

In this paper, we consider a simple S/N bilayer heterostructure with a superconducting cou-

pling constant in the N layer equal to zero, i. e., λN = 0 and ∆N = 0. We calculate the total free

energy FS/N of the system that consists of bulk terms FS and FN as well as the boundary term

FB. Below the critical temperature Tc, the energy FS (FN ) decreases (increases), respectively.

On the contrary to FN , the boundary term FB decreases the total free energy in such a way that

the contribution of the terms FN + FB is negative. The contribution FS + FB remains negative

as it is in the absence of the PE. The condensate current gives a positive contribution to both

terms FN + FB and FS + FB making the current-carrying state unfavorable.

2. Theory

Frequently the analysis of the free energy (F ) is performed using the Ginzburg-Landau free

energy expansion, assuming the smallness of the order parameter ∆. This approach is not

applicable to the considered heterostructure because the superconducting order parameter ∆N

in the N film is assumed to be zero. On the other hand, a part of electrons in N condense due

to the PE and therefore the free energy FN changes also in the superconducting state. Thus,

in order to calculate the variation δF , we need to find first the quasiclassic matrix Green’s

functions ĝ in the S and N regions using the boundary conditions and to express the free energy

in terms of the functions ĝ. We consider a simple case of diffusive S/N structure when the

function ĝ obeys the Usadel equation [36]. In particular, the system under consideration is a

bilayer which consists of S and N films with thicknesses dS,N , respectively as shown in Fig.1.

The current is assumed to flow along the interface in the y-direction. We integrate out the

phase χ(y) by making the transformation ĝn = Ŝ† · ĝ · Ŝ, where Ŝ = exp[(iQy/2)τ̂3]. This means

that the phase χ and the functions ĝn after the transformation depend only on the x coordinate

and we drop the subscript “n” in what follows. We represent the matrix ĝ in a standard form

ĝ = τ̂3 cos θ + τ̂1 sin θ, which is typically used in studying S/N structures [37–42]

so that the normalization condition ĝ · ĝ = 1̂ is automatically fulfilled. The function θ depends

on x and obeys the Usadel equations in the S and N regions

−DS∂
2
xxθS + 2ω sin θS − 2∆ cos θS + (DSP

2
S/2) sin(2θS) = 0, S film (1)

−DN∂2
xxθN + 2ω sin θN + (DNP 2

N/2) sin(2θN ) = 0, N film (2)

where DS;N are the diffusion coefficients in the S(N) films, ω is the Matsubara frequency, P =

∇χ − 2πA/Φ0 is the gauge-invariant condensate momentum and Φ0 = hc/2e is the magnetic

flux quantum. The Usadel equations are complemented by the standard Kurpiyanov-Lukichev

boundary conditions for θS,N [43] at the interface

∂xθS(N) = −κB,S(N) sin(θS − θN )|x=0 (3)

2 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24113 (8 pp.)
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Figure 1. (Color online.) A schematic representation of the S/N bilayer structure.

where κB,S(N) = 2/RBσS(N), RB is the S/N interface resistance per unit area and σS,N are

the conductivities in the S and N films in the normal state. The order parameter ∆, which is

non-zero in the S film, is determined by the self-consistency equation

∆ = λ(2πT )
∑
ω⩾0

sin θS(ω) (4)

Note, Eq.(4) and Eqs.(1-2) are obtained by the variation of the total free energy FS and FN

with respect to ∆ and θ

FS = 2νS

∫ 0

−dS

dx

{
∆2

2λ
+ 2πT

∑
ω⩾0

[
DS

4
(∂xθS)

2 + ω(1− cos θS)−∆sin θ

+
DSP

2

8
(1− cos(2θS))

]}
,

(5)

FN = 2νN

∫ dN

0
dx

{
2πT

∑
ω⩾0

[
DN

4
(∂xθN )2 + ω(1− cos θN ) +

DNP 2

8
(1− cos(2θN ))

]}
, (6)

where ν, P , D are the density of states, momentum, and diffusion coefficient in either S or N

film, respectively. We set ∆N equal to zero since we assume that λN = 0. The energy F is

counted from its value in the normal state, i.e. θ = 0. This expression for FN can be also

derived from a more general expression for the free energy of a superconductor in the presence

of an exchange field [44, 45]. We also note by passing that taking the variation of the sum of

the F and the magnetic energy (∇×A)2/8π one obtains the London equation ∇2A = (4π/c)j,

where j = −(c/4π)Λ−2
L P. Here, Λ−2

L = [2σ/(c2ℏ)](2πT )
∑

ω⩾0 sin
2 θ(ω)) is the inverse squared

London penetration depth. In order to take into account the boundary conditions (3), we need

to add the boundary term FB [47, 48] to FS + FN so that the total functional F is given by

F = FS + FN + FB (7)

In the following we solve Eqs.(1-2) for the functions θS,N together with the self-consistency

equation (4) and find a minimum of the free energy F as a function of the condensate velocity

V = P/m. In a general case, this can be done only numerically. Here we restrict the analysis

with the simplest case of a weak proximity effect when the Usadel equation for θN2 can be

linearized and the function θS is weakly perturbed by the PE. The latter assumption is valid if

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24113 (8 pp.) 3
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the condition δθS ≲ ξS/(RBσS) ≪ 1 is fulfilled, where ξS ∼=
√

DS/2∆ is a coherence length in S.

Yet we do take into account a suppression of the order parameter ∆ by the condensate flow. In

the case of small suppression of ∆, we find δ∆ ∼= −(DSP
2
S/2∆)

∑
ω⩾0(ω

2/ζ4ω)/
∑

ω⩾0 ζ
−3
ω , where

ζω =
√
ω2 +∆2

0. At low temperatures (T ≪ ∆) the gap variation is δ∆ ∼= −DSP
2
S/2. Note that

a strong suppression of ∆ by the condensate flow was studied in Refs. [44, 46]. In the absence

of the PE and the condensate flow, one has sin θS0 ≡ fS = ∆0/ζω and cos θS0 = ω/ζω with

ζω =
√
ω2 +∆2

0. The direct calculation of FS0 gives a well known result FS0 = −νS∆
2dS/2 [2].

The correction δFS0 caused by the condensate flow is δFS0 = νSDSP
2
S(2πT )∆

∑
ω⩾0 ζ

−2
ω . Thus,

the energy FS of the S film with a spontaneous current is

FS = −νSdS
∆2

2

[
1−DSP

2
S(2πT )

∑
ω⩾0

ζ−2
ω

]
(8)

and as expected the condensate flow reduces the condensation energy.

Next we evaluate the contribution to the free energy of the N film, FN . Linearized Eq.(2) has

the form

−∂2
xxθN + κ2qθN = 0, (9)

with a solution

θN (x) =
κB
κq

fS
cosh(κq(x− dN ))

sinh(κqdN )
, (10)

where κq =
√

2ω̃ + q2/ξN , ξN =
√

DN/2∆, q = QξN and fS = ∆/ζω. The solution describes

correctly the condensate Green’s function in N provided the condition RB > ρNξN is fulfilled.

In the limit of a weak PE the energy FN + FB can be written in the form

FN + FB = νN (2πT )DN

∑
ω⩾0

{∫ dN

0
dx

1

2
[(∂xθN )2 + κ2qθ

2
N ] + κB[1− cos(θS − θN )]

}
, (11)

where the last term is the boundary free energy [47,48]. Substituting the solution (10) into (11),

we come to the formula for FN + FB and θS one can easily calculate the

FN + FB = νN (2πT )(DNκ2B)
∑

[
f2
S

2κq tanh(κqdN )
+

1

κB
(1− cos θS)−

f2
S

κq tanh(κqdN )
]. (12)

The first term in the figure brackets is the contribution of the bulk N region whereas the last

term stems from the boundary contribution to the free energy. The second term is a reduction

of the free energy due to the PE. One can see that the first term gives a positive contribution

to the F and decreases with increasing the condensate velocity VS ∼ q. However the boundary

term (the last one) is twice larger than the first one and therefore the total contribution of the

terms due to condensate current, Eq.(8,12), is positive. This means that the condensate current

reduces the free energy.

3. Conclusions

To conclude, we analyzed the free energy for S/N bilayer in the presence of the condensate

current. We have shown that the bulk of the N film gives a positive contribution FN (q) to the

free energy which decreases with increasing condensate velocity V ∼ q. However the contribution

of boundary term FB to F is twice larger in magnitude than FN (q) and is also negative as the

contribution FS of the superconductor S. Therefore the total free energy F increases when

condensate moves; this makes the current-carrying state unfavorable.

4 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24113 (8 pp.)
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4. Supplementary Information

4.1. General Case

Here we present the evaluation of the free energy FN in the N film. We integrate once Eq.(7) in

the main text

−DN

2
(∂xθN )2 + 2ω(1− cos θN ) +

DNP 2
N

4
[1− cos(2θN )] = 0 (S1)

and assumed that dN ≫ ξN,∆ ≡
√
DN/2∆ so that θN = 0 at x = dN . Taking into account

Eq.(S1), the energy FN can be written as follows

FN = νN (2πT )DN

∑
ω⩾0

∫ ∞

0
dx(∂xθN )2 ≡ νN (2πT )DN

∑
ω⩾0

F̃N,ω, (S2)

where ω̃ = ω/∆ and the function F̃N,ω is defined as

F̃N,ω =

∫ ∞

0
dx(∂xθN )2 = −

∫ θN0

0
dθN (∂xθN ) = −

∫ θN0

0
dθ̄N sin θ̄N

√
κ2ω + P 2 cos2 θ̄N

=
P

2

[√
1 + a2ω − t0

√
t20 + a2ω + a2ω ln

1 +
√

1 + a2ω

t0 +
√
t20 + a2ω

]
,

(S3)

where t0 ≡ cos θ̄N ≡ cos(θN/2)|x=0 and a2ω = κ2ω/P
2. The parameter t0 is found from the

boundary condition√
1− t20

√
1 + (q/κωξN )2t0 =

κBN

2κω

[
∆(2t2 − 1)− 2ωt0

√
1− t20

]
, (S4)

4.2. Weak PE

Consider now a weak PE when the function θN is small. In this case one can obtain a formula

for FN for arbitrary thickness dN . At θN ≪ 1, Eq.(2) in the main text can be linearised

−∂2
xxθN + κ2NθN = 0, (S5)

where κ2N = κ2Nω + P 2, κ2Nω = 2ω/DN . The boundary conditions, Eq.(3), have the form

∂xθN = −κB,N [sin θS − θN cos θS ]|x=0,

∂xθN = 0|x=dN ,
(S6)

where κBN = 2/RBσN . The solution for Eq.(S5) obeying the condition (S6) is

θN (x) =
κBN

κN

cosh(κN (x− dN ))

coshϑNDN
sin θS , (S7)

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 1, 24113 (8 pp.) 5
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where DN = tanhαN + (κBN/κN )ω̃/
√
ω̃2 + 1, αN = κNdN , sin θS = 1/

√
ω̃2 + 1. The energy of

the N film, FN , is

FN = 2νN (2πT )
∑
ω⩾0

∫ dN

0
dx

[
DN

4
(∂xθN )2 +

1

4
(2ω +DNP 2)θ2N

]

= 2νN
DNκ2BN

4
ξN,∆(2πT )

∑
ω⩾0

tanhαN

D2
N

1√
ω̃ + q2

1

ω̃2 + 1
.

(S8)

In the limit of a thick N film (dN ≫ ξN,∆) Eq.(S6) acquires the form

FN = 2νN
DNκ2BN

4
ξN,∆(2πT )

∑
ω⩾0

1√
ω̃ + q2

1

ω̃2 + 1
. (S9)
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