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Two main concepts of infinity (Aristotle’s and Cantor’s) are known in the history of mathematics.

The last one, prevailing at present, was formulated by founder of the set theory Cantor about

a century and a half ago. Cantor used (1) the diagonal method to compare the powers of the

set of infinite rows of digits 0 and 1 and natural number series; (2) the Cantor’s theorem about

prevalence of the power of the set of all subsets of a set A over the power of A: |P (A)| > |A|.
In this work it is shown by use of specific examples that Cantor’s reasons can’t be considered

as strict proofs. Therefore, the concept of the common potential(Aristotelian) infinity seems to

be more acceptable.

PACS: 02.10.-v

Keywords: sets, natural numbers, infinity

Millions of years will pass before we’ll be able
to understand why we tend to cognize infinity.

P. Erdös.

1. Introduction

The mathematics is rested on three pillars: zero, unit and infinity symbolized respectively as 0,

1 and ∞. These notions are very capacious, intimately interrelated and go out far beyond the

mathematics. The unit may be enlarged or be subdivided as much as desired. It is a seed of

the natural number sequence emerging as a result of successive summation of unit with itself.

The notion of mathematical infinity is used to symbolize the potential(virtual) result of

this unlimited process. Ciphers 0 and 1 are enough to write down any natural number in binary

number system:

a = a02
0 + a12

1 + . . .+ ai2
i + . . . ≡ a0a1 . . . ai . . . (1)

and any proper fraction as dyadic expansion:

0.a ≡ 0.a0a1a2 . . . an . . . = a0
1

21
+ a1

1

22
+ a2

1

23
+ . . .+ an−1

1

2n
+ . . . , (2)

where each an is equal to 0 or 1. For finite natural numbers the series (1) terminates at some

finite index n, that is an = 1, an+1 = an+2 = . . . = 0. The corresponding finite fraction 0.a may

be represented as “true infinite” fraction according to the rule:

0.a = 0.a0a1 . . . an−11000 . . . ≡ 0.a0a1 . . . an−10111 . . . (3)

Each fraction may be considered as a point of the segment [0, 1], and the set of all fractions has

a power of the continuum c in the present-day treatment.

The notion infinity, widely used also outside the mathematics, is an item of perpetual dis-

cussions in the scientific community and also within the general public. In the science it was

†This paper is dedicated to Professor Boris Z. Malkin, who made a significant contribution to the field of magnetic
radio spectroscopy in Kazan University, on the occasion of his 85th birthday.
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thought since Aristotelian times that “infinity is always in the possibility and not in the actu-

ality”. K. Gauss wrote in 1831: “I am against using of infinity value as something completed;

that is inadmissible in mathematics”. The tradition was violated by the founder of the set

theory G. Cantor, who introduced into custom the notion of the completed, “actual” infinity as

opposed to the Aristotelian “potential infinity”. Cantor generalized the notion of the number

of elements to the infinite sets by using the term power (or cardinal number) of the set

and the symbol ℵ (aleph) to represent powers of the infinite sets. According to Cantor there

exist infinite sets with different cardinal numbers. The sequence of the cardinal numbers of the

infinite sets in the order of their growth looks like

ℵ0 < ℵ1 < ℵ2 < . . . , (4)

where the minimal cardinal number ℵ0 is a power of the natural number sequence N. The

series (4) must contain the power of continuum c, which exceeds ℵ0: c > ℵ0, as was shown by

Cantor using his famous “diagonal” procedure. The assumption c = ℵ1 is called the continuum

hypothesis.

Such radical intrusion to the foundations of mathematics met rather ambiguous responses

from the prominent scientists which worked at the end of XIX – beginning of XX centuries.

Some contradictions (paradoxes) of the Cantor’s set theory were pointed out, and they were

thought to be resolvable by the improvement of the logic of the mathematical reasoning. The

efforts in this direction resulted in the foundation and development of mathematical logic.

The proposed aim of this mathematical branch was the complete formalization of the processes

of inference and proof (Hilbert’s program), which would allow to avoid errors and contra-

dictions. The essential restrictions on the feasibility of this program were imposed by famous

Gödel’s theorems about consistency and incompleteness of different systems of axioms. Many

contradictions of intuitive Cantor theory fall away within the limits of the modern axiomatic

set theories; rather, they were shaded by the choice of axioms. However, some aspects of these

theories leave nontransparent as, for instance, the system of alephs (4), which was characterized

by H. Weyl as “the mist on the mist”. It is not clear weather the continuum hypothesis or its

broadened variant are correct.

The above-mentioned relation c > ℵ0 takes an important position in a theory of the cardinal

numbers. In this work we present some reasons in favor of alternative relation, c = ℵ0, that is,

the power of continuum coincides with the power of the natural number sequence. As a matter

of fact, this is the return from the Cantor’s concept of infinity to Aristotelian , or rather the

erasing the boundary between them.

Some support in favor of the unique infinity is provided by Cantor’s very definition of

the set as “a collection of definite, distinguishable objects of our perception or our thought

conceived as a whole”. The collection of “distinguishable” objects may in principle be dissociated

into elements and renumbered, that is, this set is denumerable (finite or countable). Or, in

other words, for any two infinite Cantor’s sets one may initiate a potentially infinite process

of composing of pairs of elements resulting in the one-to-one (“1 – 1”) correspondence of

these two sets.

Not every collection of objects satisfies Cantor’s definition of sets. For instance, since the cre-

ation of quantum mechanics the sets of identical particles which obey the quantum-mechanical

principle of indistinguishability have come into the scientific practice. Some restrictions on

the quantitative characteristics of the quantum-mechanical sets were also imposed by Heisen-

berg’s principle of uncertainty. In quantum theory the notion of Observer is explicitly in-
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troduced, who regulates the measurement processes, and this is in harmony with inclusion of

human perception and thought into the definition of sets.

The seeming paradoxicality of the equality of continuum and natural number series powers is

evidently connected with the representation of these sets as a continuous segment of the number

axis and isolated points on this axis correspondingly. However, if one performs the following

potentially infinite procedure on the segment: to throw out the middle one third of the initial

segment, then the middle thirds of two remained parts of the initial segment and so on, then

as a “result” the so-called triadic set of Cantor (fractal known as Cantor’s dust) appears. An

appearance of this set is like an infinite collection of points, but it has a power of continuum.

2. Discussion of Cantor’s “diagonal procedure”

Two sets are said to be equivalent (or have the same power) if the one-to-one (“1−1”) correspon-

dence between their elements may be established. Intuitively, the process of pairing the elements

will never end if both sets are infinite. In Cantor’s theory there are many levels of infinity; this

was proved by use of (1) the “diagonal procedure” and (2) the Cantor’s theorem : a power

of any set M is less than a power of the set P (M) of all subsets of M.

Let us consider in more detail one of the versions of the diagonal method. Imagine that we

can write out all dyadic fractions A in an arbitrary order:

A1 0.a11a12a13 . . . a1i . . .

A2 0.a21a22a23 . . . a2i . . .

A3 0.a21a22a23 . . . a2i . . .

. . . . . . . . . . . . . . . . . . . . . . .

Ai 0.a21a22a23 . . .a2i . . .

. . . . . . . . . . . . . . . . . . . . . . .

(5)

Here each element aik = 0 or 1. The diagonal of the table (5) arising in the process is

0.a11a22a33 . . . aii . . .. Then we change a11 for a′11 = 1 − a11, a22 for a′22 = 1 − a22 and so on.

The resulting fraction

A′ = 0.a′11a
′
22a

′
33 . . . a

′
ii . . . (6)

differs from each of the fractions Ai in the table by at least one digit (a′ii ̸= aii), that is, this

fraction is left without number. Cantor concludes from here that the amount of fractions exceed

the amount of numbers, so the set of fractions is not countable and its power is greater than

that of the natural series.

However, it seems more natural to assume the diagonal procedure as an additional evidence

for the infiniteness of the numeration process. The supposition that all fractions are written

out in table (5) appears to be contradictory. During the process of pairing for establishing the

“1− 1” correspondence neither the fractions nor numbers come to an end.

Note also that the composition of the fraction A′ (6) serves as a peculiar application of the

axiom of choice (apple of discord in mathematics) – each element of A′ is a “reverse” of one

element of any function Ai.

The properties of the diagonal method are manifested more brightly if the table of dyadic
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fractions is written in “natural”, not in arbitrary, order:

f0 0.0000 . . . 0 . . .

f1 0.1000 . . . 0 . . .

f2 0.0100 . . . 0 . . .

f3 0.1100 . . . 0 . . .

. . . . . . . . . . . . . . . . . . . . . . .

fn 0.n0n1n2n3 . . .0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . .

(7)

Here n0n1n2n3 . . . is a number n in dyadic representation:

n = n0n1n2n3 . . . = n02
0 + n12

1 + n22
2 + n32

3 + . . . . (8)

Certainly, nn = 0, otherwise the term 1 ·2n > n would be contained in the sum. The diagonal of

the table is 0.000 . . . 0 . . ., so the “absent in the table fraction” is 0.111 . . . 1 . . . with unrestricted

number of ones. Such “fraction” is a point which may be classified as an integer number 1.

Now we have no weighty grounds to assert that there are other fractions which are not

presented in the appropriate table. Each fraction A= 0.a0a1a2a3 . . . ai . . . (it may be π − 3, for

which N ∼ 1015 digits are known) is a limit of the Cauchy sequence

0.a0, 0.a0a1, 0.a0a1a2, . . . , 0.a0a1a2 . . . ai . . . .

All elements of this sequence (including yet not calculated in the case of π − 3) are contained

in the table, which is guaranteed by the chosen manner of enumeration of fractions.

3. Notes on the Cantor’s theorem.

The given above numeration of dyadic fractions table (7) may be used also for the criticism of

the Cantor’s theorem. Number n of the fraction fn corresponds to dyadic recording (8) of the

number n. This number is uniquely defined by the collection of digits ni which are equal to 1:

n =
∑

i(ni=1)

2i−1. (9)

Then the set of indices i, which is a subset of natural series N, may be put into “1 − 1”

correspondence with the natural number n:

n ↔ {i− 1|ni = 1} . (10)

For instance,

1 = 20 ↔ {0}, 2 ↔ {1}, 27 = 20 + 21 + 23 + 24 ↔ {0, 1, 3, 4},
or yet: {a, b, c, . . .} ↔ 2a + 2b + 2c + . . . .

It is evident that in the established “1 − 1” correspondence N ↔ P (N) the number n is not

contained in the corresponding subset. Just the subsets, containing a number to which they

correspond, play principal role in standard proofs of the Cantor’s theorem.
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4. Alternative ordering of the natural series

Let us consider one more reason to show that Cantor’s theorem can’t be applied to infinite sets.

It is well known that natural series N have many different order types. There is a lot of ways

to present N as a union of nonintersecting infinite sets of numbers. The simplest one is the

decomposition to even and uneven numbers:

N = {1, 3, 5, . . . ; 2, 4, 6, . . . } = {2n− 1}+ {2n}.

(The sign + stands here for the union of sets.) The decomposition may be continued in an

analogous way:

N = {1, 5, 9, . . . , 3, 7, 11, . . . ; 2, 6, 10, . . . , 4, 8, 12, . . .} = {4n− 3}+ {4n− 1}+ {4n− 2}+ {4n}.

So, it is clear that the decomposition of N into nonintersecting subsets can be realized by

infinitely many ways. Furthermore N is inexhaustible source of sequences {f(n)} where f(n) is

an integer-valued growing function as, for instance, n2, 10n, n!.

For our purposes the following way of decomposition of N seems to be useful. According to

the basic theorem of arithmetic each n ∈N may be uniquely written as a product of powers of

the primes pi:

n = pn1
1 pn2

2 . . . pni
i . . . ,

so that

N =
∑

n1n2n3...

pn1
1 pn2

2 . . . pni
i . . . (11)

Here ni = 0, 1, 2, 3, . . . and so:

N = 1 +
∑
m,i

pmi +
∑
mk,ij

pmi pkj +
∑

mkl,ijh

pmi pkj p
l
h + . . . . (12)

If one lets ni in sum (11) to run also over negative integers, then the set Q of all rational numbers

will arise instead of N.

Let Pi be a set of all powers of prime pi: Pi = {pi, p2i , p3i , . . .}. P = {P1,P2,P3, . . .} is a

collection of all such sets. The power set of this collection may be presented as follows:

ExpP = {∅, {Pi}, {Pi × Pj}, {Pi × Pj × Pk}, . . . , {Pi × Pj × Pk . . .}, . . . }. (13)

Each element of Exp P corresponds with one of the sums in eq. (12), so the equivalence relation

may be established:

ExpP ∼ N. (14)

The power of P (and powers of its constituents Pi) is evidently equal to the power of N, that is,

ℵ0. Consequently |ExpP| = 2ℵ0 = ℵ0 in accordance with the concept of unique infinity.

5. Conclusion.

As it was mentioned above, the introduction of the set theory into mathematics as its foundation

was accompanied by lively discussions. The enthusiastic comments of D. Hilbert and B. Russell

alternate with critical statements by A. Poincare and G. Weyl. Poincare wrote in 1908 that

“Later generations will regard set theory as a disease from which one has recovered”. The

fact, that the set theory along with the Cantor’s concept of infinity took the firm position in

mathematics, may be accompanied by the remark of J. von Neumann to F. Smith: “Young man,
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in mathematics you don’t understand things. You just get used to them”. Or, as M. Plank is

expressed in connection with the quantum mechanics: “A scientific truth does not triumph

by convincing its opponents and making them see the light, but rather because its opponents

eventually die, and a new generation grows up that is familiar with it.” It is natural, however,

that with the progress of science the necessity to return to controversial points in its history

arises. Impracticability of Hilbert’s program revived interest to the theory of infinity.

The mathematics, as A. Einstein wrote in 1921, is due by its origin to the necessity to learn

something about the behavior of the really existing things. “Mathematical theorems . . . are

exact until they refer to actuality.” Indeed, the very processes of picking out of objects under

study from surroundings and measurement influence somehow the results of investigation. The

precision of measurements is always finite. Infinity, infinite precision are attainable only mentally.

The natural number series is quite enough for solving the problems connected with quantities

great (or small) as much as desirable.

An existence of different levels of infinity, which was actually postulated by Cantor, doesn’t

look like well-founded according to given above reasons. Discussions about foundations of math-

ematics produce an emotional background which is well described by the following citation from

the essay “Mathematics and Logic” by G. Weyl (1946) which is actual until now:

“From this historical essay the following is quite clear: we all less and less believe to the

presence of sufficient grounds of logic and mathematics. As all in the modern world we have

our own “crisis”. And it lasts already about half century. From outside it is hardly noticeable

that this crisis interferes our everyday work; however I myself, for instance, must confess that

it leaves the deep mark on all my mathematical work . . . It constantly damps enthusiasm and

resolution with which I set to my scientific researches”.
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