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Using the stationary perturbation theory the equations for small polaron energies are obtained.

This polaron has small spatial dimensions - only three equal atoms of a linear chain. The initial

Hamiltonian has the contributions related to electron hoppings between the atoms, interaction

of electron of the central atom with its oscillations and anharmonic contributions to the energy

of its oscillations of the third and the fourth orders. The obtained analytical expressions give

evidence that the polaron states with the fully filled (or significantly filled) atomic orbitals have

the lowest energies that is in agreement with the results of numerical calculations available in

the literature.

PACS: 71.38.Ht, 71.38.-k, 31.15.Md.
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1. Introduction

A linear chain of atoms with significant interaction of electron hoppings between neighboring

atoms with vibrational degrees of freedom is a traditional model of polaron states [1, 2]. Often

the studies of the properties of these polaron states are carried out using numerical methods,

(see, e.g. [3]).

We will consider the problem by using the simplest model of a linear chain of identical atoms

with linear interaction between electron hoppings of atoms and their vibrations to solve the

problem of the energy spectrum of polaron states in an analytical form using stationary pertur-

bation theory. In order to subsequently compare the obtained results, we used the Hamiltonian

close or similar to that used in [3]. Bearing in mind the nature of small polaron, we will consider

the three neighboring atoms (n − 1, n, n + 1), where only n-th of these oscillates. The fact is

that a monoatomic linear chain of atoms has the most short wavelength oscillations with the

wavelength λmin = 2a, where a is the distance between the nearest atoms in the chain, for which

corresponds the wave vector q = π/a and the maximum frequency ωosc = ωmax = 2
√
β/µ, where

β is the elastic constant and µ is the mass of the atom participating in this oscillation. The

central atom moves in antiphase with its nearest neighbors n−1 and n+1, that qualitatively cor-

responds to the oscillation of only the atom n. The group velocity Vgr = a
√
β/µ| cos(qa/2)| = 0

for oscillation with the wavelength λmin = 2a and the wave vector q = π/a with which the

oscillation energy is transferred, is equal to zero [4].

2. Calculation details and results

For the purpose of the simplest comparison of our results we will use the Hamiltonian similar

to [3]:

Ĥ = Ĥ0 + Ĥ int, (1)

†This paper is dedicated to Professor Boris Z. Malkin, who made a significant contribution to the field of magnetic
radio spectroscopy in Kazan University, on the occasion of his 85th birthday.
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where

Ĥ0 = Ĥ0
el + Ĥ0

osc, Ĥ int = Ĥ int
el−el + Ĥ int

el−osc. (2)

Ĥ0
el = ~ωel

(
a+n−1an−1 + a+n an + a+n+1an+1

)
, (3)

where a+n and an are the creation and annihilation operators of electron in atom n, respectively.

We introduce the wave functions of electron in representation of electron filling factor |1k}
and |0k} existing or absent on atom k, respectively. Here, for the electronic functions we will

use the special brackets |1k} and |0k} in contrast to oscillation wave functions |mn〉. At that

a+k |1k} = 0, a+k |0k} = |1k}, ak|1k} = |0k}, ak|0k} = 0, a+k ak|1k} = |1k}, and a+k ak|0k} = 0 for

k = n− 1,n,n+ 1.

Ĥ0
osc = ~ωosc

(
b+n bn +

1

2

)
, (4)

where b+n and bn are the creation and annihilation operators of oscillation quantum for atom

n. The oscillator wave functions in the representation of filling factors |mn〉 are subject to

action of operators b+n and bn, and satisfy the standard relations: bn|mn〉 =
√
mn|mn − 1〉,

b+n |mn〉 =
√
mn + 1|mn + 1〉, and b+n bn|mn〉 = mn|mn〉 and

Ĥ0
osc|mn〉 = ~ωosc

(
mn +

1

2

)
|mn〉. (5)

The oscillator coordinate - the displacement xn of atom n from the equilibrium position is

related to b+n and bn as

xn = l
(
b+n + bn

)
, (6)

where

l =

√
~

µωosc
. (7)

The electron hopping Hamiltonian is

Ĥ int
el−el = −J

(
a+n an+1 + a+n an−1 + a+n+1an + a+n−1an

)
, (8)

and the electron-oscillation interaction Hamiltonian has the following form

Ĥ int
el−osc = −χl a+n an

(
b+n + bn

)
. (9)

Since the anharmonic contributions to the oscillation energy of atom n in the chain affect

the energy structure of the polaron states and in order to reduce the number of independent

parameters of the model we introduce, following [3], the unique single-atomic Morse potential

V (xn) = V0 [exp(−αxn)− 1]2 , (10)

and its expansion to the anharmonic contributions of the 4-th order has the form

V (xn) = V0
(
α2x2n − α3x3n +Kα4x4n

)
. (11)

where K = 7/12. The quadratic contribution to V (xn) in (4) is related to oscillation frequency

of atom n as

V0α
2 =

µω2
osc

2
. (12)
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Table 1. The matrix of operator Ĥ int
el−el constructed on the products of electron functions

|pn−1}|qn}|rn+1} ≡ |pqr}. The table columns have the same order as for the rows. Zero

matrix elements are leaved blank.

|000} |100} |010} |001} |011} |101} |110} |111}
{000|
{100| −J
{010| −J −J
{001| −J
{011| −J
{101| −J −J
{110| −J
{111|

Table 2. The matrix of operator Ŵ (xn) constructed on the functions that diagonalize the matrix of

operator Ĥel−el. Here V = Vanh(xn). The abbreviations for these functions are as fol-

lows: Ψ1 = |000}, Ψ2 = 1√
2
(|100} − |001}), Ψ3 = 1

2

(
|100}+

√
2|010}+ |001}

)
, Ψ4 =

1
2

(
|100} −

√
2|010}+ |001}

)
, Ψ5 = 1√

2
(|011} − |110}), Ψ6 = 1

2

(
|011}+

√
2|101}+ |110}

)
,

Ψ7 = 1
2

(
|011} −

√
2|101}+ |110}

)
, Ψ8 = |111}. Zero matrix elements are leaved blank.

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8

Ψ1 V

Ψ2 V

Ψ3
V − J

√
2

−1
2χxn

+1
2χxn

Ψ4
1
2χxn

V + J
√

2

−1
2χxn

Ψ5 V − χxn

Ψ6
V − J

√
2

−1
2χxn

−1
2χxn

Ψ7 −1
2χxn

V + J
√

2

−1
2χxn

Ψ8 V − χxn

The anharmonic contribution in V (xn) has the form

Vanh(xn) = V0
(
−α3x3n +Kα4x4n

)
. (13)

To solve the problem of energy levels of small polaron according to the perturbation theory

for the degenerate levels [5] we first diagonalize the matrix of operator Ĥ int
el−el constructed on the

products of electron functions |pn−1}|qn}|rn+1} ≡ |pqr} where {p; q; r} = {0; 1} (see Table 1).

Using the wave functions that diagonalize the matrix (Table 1) we construct the matrix of

operator

Ŵ = Ĥ int + Vanh(xn), (14)
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see Table 2. The twofold degenerate matrix eigenvalues εI,II,III,IV have the form

εI,II = Vanh(xn)− χxn + JG+,−, (15)

εIII = Vanh(xn)− χxn; εIV = Vanh(xn), (16)

where

G+,− =
1

2J

(
χxn ±

√
(χxn)2 + 8J2

)
, (17)

and the eigenfunctions have the form

ΨεIa =
1√

2 +G2
−

(|100}+G−|010}+ |001}) , (18)

ΨεIIa =
1√

2 +G2
+

(|100}+G+|010}+ |001}) , (19)

ΨεIIIa = |111}, (20)

ΨεIV a =
1√
2

(|100} − |001}) , (21)

ΨεIb =
1√

2 +G2
+

(|011} −G+|101}+ |110}) , (22)

ΨεIIb =
1√

2 +G2
−

(|011} −G−|101}+ |100}) , (23)

ΨεIIIb =
1√
2

(|011} − |110}) , (24)

ΨεIV b = |000}. (25)

Now we consider the xn dependent contributions to εI , εII , εIII , εIV as perturbations and

obtain the corrections to the energy of the oscillator vacuum state in the first and second order

of stationary perturbation theory.

For this purpose we present these expansions with accuracy up to χ4x4n:

εI,II = Vanh(xn)− 1

2
χxn ± J

√
2

[
1 +

1

24

(χ
J

)2
x2n −

1

29

(χ
J

)4
x4n

]
, (26)

and obtain

EI,II =
3

4
V0Kα

4〈0|x4n|0〉 ± J
√

2

[
1 +

1

24

(χ
J

)2
〈0|x2n|0〉 −

1

29

(χ
J

)4
〈0|x4n|0〉

]
− 1

~ωosc

[∣∣∣∣〈0|12χxn + V0α
3x3n|1〉

∣∣∣∣2 +
1

3

∣∣∣∣〈0|12χxn + V0α
3x3n|3〉

∣∣∣∣2
+

1

2

∣∣∣∣〈0|KV0α4x4n + J
√

2

[
1

24

(χ
J

)2
x2n −

1

29

(χ
J

)4
x4n

]
|2〉
∣∣∣∣2

+
1

4

∣∣∣∣〈0|KV0α4x4n + J
√

2

[
1

24

(χ
J

)2
x2n −

1

29

(χ
J

)4
x4n

]
|4〉
∣∣∣∣2
]
,

(27)
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EIII =
3

4
V0Kα

4〈0|x4n|0〉

− 1

~ωosc

[∣∣〈0|χxn + V0α
3x3n|1〉

∣∣2 +
1

3

∣∣〈0|χxn + V0α
3x3n|3〉

∣∣2
+

1

2

∣∣〈0|KV0α4x4n|2〉
∣∣2 +

1

4

∣∣〈0|KV0α4x4n|4〉
∣∣2] ,

(28)

EIV =
3

4
V0Kα

4〈0|x4n|0〉

− 1

~ωosc

[∣∣〈0|V0α3x3n|1〉
∣∣2 +

1

3

∣∣〈0|V0α3x3n|3〉
∣∣2

+
1

2

∣∣〈0|KV0α4x4n|2〉
∣∣2 +

1

4

∣∣〈0|KV0α4x4n|4〉
∣∣2] ,

(29)

written in terms of the matrix elements

〈0n|x2n|0n〉 =
1

2
l2, 〈0n|x4n|0n〉 =

3

4
l4 〈0n|xn|1n〉 =

1√
2
l, 〈0n|x3n|1n〉 =

3

2
√

2
l3,

〈0n|x3n|3n〉 =

√
3

2
l3, 〈0n|x2n|2n〉 =

1√
2
l2, 〈0n|x4n|2n〉 =

3√
2
l4, 〈0n|x4n|4n〉 =

√
1

2
l4.

(30)

The general contribution to the energies of all states and of only anharmonic origin is

∆Eanh =
3

22
KV0(αl)

4 − V 2
0

~ωosc

{
11

23
(αl)6 +

3 · 7
23

K2(αl)8
}
, (31)

and is subtracted from all polaron state energies

EI,II −∆Eanh = − (Λ1 + Λ2 + Λ3)± Λ4, EIII −∆Eanh = −Λ5, EIV −∆Eanh = 0, (32)

where

Λ1 =
1

~ωosc

[
1

23
(χl)2 +

3

22
V0 (αl)3 (χl)

]
, (33)

Λ2 =
J2

~ωosc

[
1

29

(
χl

J

)4

− 3

213

(
χl

J

)6

+
3 · 7
220

(
χl

J

)8
]
, (34)

Λ3 =
J
√

2KV0
~ωosc

[
3

25

(
χl

J

)2

(αl)4 − 3 · 7
211

(
χl

J

)4

(αl)4
]
, (35)

Λ4 = J
√

2

[
1 +

1

25

(
χl

J

)2

− 3

28

(
χl

J

)4
]
, (36)

Λ5 =
1

~ωosc

[
1

2
(χl)2 +

3

2
V0 (αl)3 (χl)

]
. (37)

3. Discussion and Summary

Use of the stationary perturbation theory allowed to obtain the expressions for the small polaron

energies in the analytical form that contains all the parameters of the initial Hamiltonian.

Since the Hamiltonian parameters may have, in general, arbitrary values, all expressions are

given up to l8, where l is the characteristic oscillation length. At the same time in the very

rough approximation, when interaction of the electron with the oscillation of atom and the

anharmonism of the third order are taken into account in the second perturbation order, in

view of initially coincident signs of these contributions into the Hamiltonian, there appears

Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 2, 24206 (6 pp.) 5
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a strong dependence of polaron states versus the parameter χ, in agreement with numerical

calculations [3]. All energy levels of polaron states appear twofold degenerate. For strong

enough coupling constants χ the lowest energy levels appear to belong to the maximum possible

filled atomic orbits.

Acknowledgments

It is a pleasure to thank Professor B.Z. Malkin for interest to the research area.

References

1. Holstein T. Annals of Physics, 8, 325 (1959)

2. Davydov A. S. Physics-Uspekhi, 25, 898 (1982)

3. Fuentes M. A., Maniadis P., Kalosakas G., Rasmussen K. O., Bishop A. R., Kenkre V. M.,

Gaididei Yu. B. Physical Review E 70, 025601 (2004)

4. Ansel’m A. I. Introduction to Semiconductor Theory, (Mir Publishers, Moscow, USSR, 1981)

645 p.

5. Landau L. D., Lifshitz E. M. Quantum mechanics, Non-relativistic Theory, 3rd Edition

(Pergamon Press, Oxford, UK, 1977) 688 p.

6 Magnetic Resonance in Solids. Electronic Journal. 2024, Vol. 26, No 2, 24206 (6 pp.)


	MRSej_24206pro.pdf
	Introduction
	Calculation details and results 
	Discussion and Summary

	MRSej_24206pro.pdf
	Introduction
	Calculation details and results 
	Discussion and Summary




